1
|
Patel DM, Kastlunger G. Non-Nernstian Effects in Theoretical Electrocatalysis. Chem Rev 2025; 125:3378-3400. [PMID: 40048413 DOI: 10.1021/acs.chemrev.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Electrocatalysis is one of the principal pathways for the transition to sustainable chemistry, promising greater energy efficiency and reduced emissions. As the field has grown, our theoretical understanding has matured. The influence of the applied potential on reactivity has developed from the first-order predictions based on the Nernst equation to the implicit inclusion of second-order effects including the interaction of reacting species with the interfacial electric field. In this review, we explore these non-Nernstian field effects in electrocatalysis, aiming to both understand and exploit them through theory and computation. We summarize the critical distinction between Nernstian and non-Nernstian effects and outline strategies to address the latter in theoretical studies. Subsequently, we examine the specific energetic contributions of the latter on capacitive and faradaic processes separately. We also underscore the importance of considering non-Nernstian effects in catalyst screening and mechanistic analysis. Finally, we provide suggestions on how to experimentally unravel these effects, offering insights into practical approaches for advancing the field.
Collapse
Affiliation(s)
- Dipam Manish Patel
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | - Georg Kastlunger
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Li X, Cheng Q, Zhang Y, Liu Y, Pan Y, Zhao D, Xiong S, Liu W, Jiang X, Yan J, Duan X, Tian Y, Li X. Engineering Lattice Dislocations of TiO 2 Support of PdZn-ZnO Dual-Site Catalysts to Boost CO 2 Hydrogenation to Methanol. Angew Chem Int Ed Engl 2025; 64:e202424435. [PMID: 39790085 DOI: 10.1002/anie.202424435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 01/12/2025]
Abstract
CO2 hydrogenation to methanol using green hydrogen derived from renewable resources provides a promising method for sustainable carbon cycle but suffers from high selectivity towards byproduct CO. Here, we develop an efficient PdZn-ZnO/TiO2 catalyst by engineering lattice dislocation structures of TiO2 support. We discover that this modification orders irregularly arranged atoms in TiO2 to stabilize crystal lattice, and consequently weakens electronic interactions with supported active phases. It facilitates the transformation of metallic Pd into PdZn alloy, effectively suppressing CO production through inhibiting the reverse water-gas shift reaction mediated by the carboxylate pathway on Pd0 sites. Moreover, it enables the efficient transfer of hydrogen species via hydrogen spillover from PdZn alloy to ZnO for compensating the poor hydrogen dissociation ability of ZnO, thereby creating both more oxygen vacancies essential for CO2 activation and a hydroxyl-rich environment conducive to hydrogenation of intermediates. These collective modifications on PdZn-ZnO dual sites synergistically induce the propensity of the formate pathway for methanol synthesis. Consequently, compared to the unmodified catalyst, our as-designed catalyst increases methanol selectivity from 64.2 to 80.0 %, reduces CO selectivity from 35.0 to 19.8 %, and achieves an impressive methanol space-time yield of 9028.0 mgMeOH gPd+Zn -1 h-1 at a similar CO2 conversion (~8.0 %).
Collapse
Affiliation(s)
- Xiaoshen Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qingpeng Cheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yingtian Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunhao Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yu Pan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Dejian Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shaohui Xiong
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xueyang Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiayan Yan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiang Duan
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Ye Tian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), State Key Laboratory of Chemical Engineering, Haihe Laboratory of Sustainable Chemical Transformations, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
3
|
Ye Z, Yang K, Lim KH, Kawi S, Jiang J. Microscopic Insights into the Catalytic Activity-Stability Trade-Off on Copper Nanoclusters for CO 2 Hydrogenation to HCOOH. J Phys Chem A 2025. [PMID: 39997150 DOI: 10.1021/acs.jpca.4c08693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Lowly coordinated copper clusters are the most cost-effective benchmark catalysts for CO2 hydrogenation, but there is a meticulous balance between catalytic activity and stability. Herein, density functional theory (DFT) calculations are implemented to examine the catalytic performance of Cun nanoclusters (n = 4, 8, 16, 32) in CO2-to-HCOOH conversion. Facile activation of H2 is observed with significant electron transfer from Cun to antibonding orbitals of H2; conversely, the C-O bond of CO2 is poorly activated due to a low degree of orbital overlap. During the reaction, structural fluxionality occurs on Cu4 and Cu8 because of the low stability; however, negligible deformation is observed on Cu16 and Cu32. In addition, Cu16 achieves a good balance between the kinetics of each elementary reaction, which is, however, difficult to be maintained on Cu4, Cu8, and Cu32. Therefore, Cu16 satisfies the trade-off between activity and stability in CO2-to-HCOOH conversion. Energy decomposition analysis clarifies that the activation barrier of the second hydrogenation originates from the energy of hydride desorption, the electronic repulsion energy due to hydroxyl group formation, as well as the energy for local Cu-O bond cleavage. The high energy demand on the second hydrogenation is mainly sourced from the last term. From the bottom up, this work provides microscopic insights into the catalytic activity-stability trade-off in CO2 hydrogenation to HCOOH and would facilitate the rational design of advanced catalysts for the high-value utilization of CO2 exhaust gas.
Collapse
Affiliation(s)
- Zechen Ye
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Kang Hui Lim
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
4
|
Zhang Y, Lian F, Sun S, Qiu H. Nano-alloy Catalysts for Methanol Synthesis from CO 2 Hydrogenation. Chem Asian J 2025; 20:e202401387. [PMID: 39604301 DOI: 10.1002/asia.202401387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Nano-alloy catalysts (NACs), which differ appreciably from monometallic catalysts, take on superior intrinsic features in surface microstructure, surface electronic properties, homogeneity in nanoscale, etc., endowing them with attractive prospects in heterogeneous catalysis. In particular, methanol synthesis from CO2 exhibits high potentials in terms of alternative energy sources to fossil fuels and NACs have shown promising performance in promoting the reaction. However, there still lacks of the bottom-up catalysts design as well as the unanimous insight regarding the mechanistic understanding. Herein, we present a comprehensive overview of the physico-chemical properties and the fabrication approach to NACs with high catalytic performance in the CO2 hydrogenation to methanol. Additionally, the progresses of NACs were comprehensively summarized in terms of mechanisms. Finally, some thinking about the further relevant studies on NACs is outlooked with the aim to provide new insights for achieving the precise design and controllable properties of NACs.
Collapse
Affiliation(s)
- Yanmin Zhang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Fangci Lian
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuzhuang Sun
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Hengshan Qiu
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
5
|
Qin B, Sun X, Lu J, Zhao Z, Li B. Metal substrate engineering to modulate CO 2 hydrogenation to methanol on inverse Zr 3O 6/CuPd catalysts. Phys Chem Chem Phys 2024; 26:25329-25340. [PMID: 39310937 DOI: 10.1039/d4cp00927d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
It is well known that the performance of some key catalytic reactions has a strong dependence on metal catalyst surfaces. In the current work, this concept is further extended to the CuPd alloy-supported zirconium oxide inverse catalyst for CO2 hydrogenation to methanol. A combined DFT and microkinetic simulation study reveal that both the metal substrate surface and the precise exposed Cu or Pd metal atoms on the substrate have a pivotal influence on the catalytic mechanism and performance of the inverse catalyst for CO2 hydrogenation to methanol. Herein, CuPd(100), (111), and (110) surfaces with either Cu and Pd terminations have been examined, which provided five metal substrates as support for the inverse catalyst. Three different mechanisms, including the formate pathway, RWGS + CO-hydro pathway, and CO2 direct activation pathway, are explored under the same conditions; they take place at the interfacial sites between the metal alloy and oxide. The calculations indicated that the inverse catalyst with the CuPd(100) substrate demonstrates better performance than those with CuPd(110) and (111) for both formate and RWGS + CO-hydro mechanisms. Conversely, the reaction pathway is more sensitive to exposed atoms on the metal substrate. The best inverse catalyst, Zr3O6/CuPd(100) with either Cu or Pd terminations, demonstrated a methanol formation TOF above 0.30 site-1 s-1 and the selectivity was above 90% at 573 K, as evaluated from microkinetic simulation. The coverage analysis indicates the most populated species is HCOO*, which is consistent with experimental reports. Both kinetic and thermodynamics control steps are identified from DRC analysis for the best performing catalysts. Overall, the current study confirms the catalytic performance of the inverse Zr3O6/CuPd catalyst and demonstrates the tunable effects of the metal alloy substrate, which can facilitate effective optimization.
Collapse
Affiliation(s)
- Bin Qin
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - XiaoYing Sun
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Jianzhuo Lu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China.
| | - Bo Li
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|
6
|
Sampei H, Saegusa K, Chishima K, Higo T, Tanaka S, Yayama Y, Nakamura M, Kimura K, Sekine Y. Quantum Annealing Boosts Prediction of Multimolecular Adsorption on Solid Surfaces Avoiding Combinatorial Explosion. JACS AU 2023; 3:991-996. [PMID: 37124301 PMCID: PMC10131206 DOI: 10.1021/jacsau.3c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Quantum annealing has been used to predict molecular adsorption on solid surfaces. Evaluation of adsorption, which takes place in all solid surface reactions, is a crucially important subject for study in various fields. However, predicting the most stable coordination by theoretical calculations is challenging for multimolecular adsorption because there are numerous candidates. This report presents a novel method for quick adsorption coordination searches using the quantum annealing principle without combinatorial explosion. This method exhibited much faster search and more stable molecular arrangement findings than conventional methods did, particularly in a high coverage region. We were able to complete a configurational prediction of the adsorption of 16 molecules in 2286 s (including 2154 s for preparation, only required once), whereas previously it has taken 38 601 s. This approach accelerates the tuning of adsorption behavior, especially in composite materials and large-scale modeling, which possess more combinations of molecular configurations.
Collapse
Affiliation(s)
- Hiroshi Sampei
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Koki Saegusa
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Kenshin Chishima
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Takuma Higo
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| | - Shu Tanaka
- Department
of Applied Physics and Physico-Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Green
Computing System Research Organization, Waseda University, Wasedamachi-27,
Shinjuku-ku, Tokyo 162-0042, Japan
| | - Yoshihiro Yayama
- Central
Technical Research Laboratory, ENEOS Corporation, 231-0815, 8 Chidoricho, Naka-ku, Yokohama, Kanagawa 100-8162, Japan
| | - Makoto Nakamura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Koichi Kimura
- Quantum
Research Center, Fujitsu Ltd., 4-1-1 Kamiodanaka, Kawasaki, Kanagawa 211-8588, Japan
| | - Yasushi Sekine
- Department
of Applied Chemistry, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
7
|
Lawes N, Gow IE, Smith LR, Aggett KJ, Hayward JS, Kabalan L, Logsdail AJ, Slater TJA, Dearg M, Morgan DJ, Dummer NF, Taylor SH, Bowker M, Catlow CRA, Hutchings GJ. Methanol synthesis from CO 2 and H 2 using supported Pd alloy catalysts. Faraday Discuss 2023; 242:193-211. [PMID: 36189732 DOI: 10.1039/d2fd00119e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of Pd based materials have been synthesised and evaluated as catalysts for the conversion of carbon dioxide and hydrogen to methanol, a useful platform chemical and hydrogen storage molecule. Monometallic Pd catalysts show poor methanol selectivity, but this is improved through the formation of Pd alloys, with both PdZn and PdGa alloys showing greatly enhanced methanol productivity compared with monometallic Pd/Al2O3 and Pd/TiO2 catalysts. Catalyst characterisation shows that the 1 : 1 β-PdZn alloy is present in all Zn containing post-reaction samples, including PdZn/Ga2O3, with the Pd2Ga alloy formed for the Pd/Ga2O3 sample. The heat of mixing was calculated for a variety of alloy compositions with high values determined for both PdZn and Pd2Ga alloys, at ca. -0.6 eV per atom and ca. -0.8 eV per atom, respectively. However, ZnO is more readily reduced than Ga2O3, providing a possible explanation for the preferential formation of the PdZn alloy, rather than PdGa, when in the presence of Ga2O3.
Collapse
Affiliation(s)
- Naomi Lawes
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Isla E Gow
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Louise R Smith
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Kieran J Aggett
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - James S Hayward
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Lara Kabalan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Andrew J Logsdail
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Thomas J A Slater
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Malcolm Dearg
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - David J Morgan
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Nicholas F Dummer
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Stuart H Taylor
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Michael Bowker
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - C Richard A Catlow
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | - Graham J Hutchings
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
8
|
Zhang H, Wang X, Liu P. Reaction-driven selective CO 2 hydrogenation to formic acid on Pd(111). Phys Chem Chem Phys 2022; 24:16997-17003. [PMID: 35730189 DOI: 10.1039/d2cp01971j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of CO2 to useful fuels and chemicals has gained great attention in the past decades; yet the challenge persists due to the inert nature of CO2 and the wide range of products formed. Pd-based catalysts are extensively studied to facilitate CO2 hydrogenation to methanol via a reverse water gas shift (rWGS) pathway or formate pathway where formic acid may serve as an intermediate species. Here, we report the selective production of formic acid on the stable Pd(111) surface phase under CO2 hydrogenation conditions, which is fully covered by chemisorbed hydrogen, using combined Density Functional Theory (DFT) and Kinetic Monte Carlo (KMC) simulations. The results show that with the full coverage of hydrogen, instead of producing methanol as reported for Pd(111), the CO2 activation is highly selective to formic acid via a multi-step process involving the carboxyl intermediate. The high formic acid selectivity is associated with surface hydrogen species on Pd(111), which not only acts as a hydrogen reservoir to facilitate the hydrogenation steps, but also enables the formation of confined vacancy sites to facilitate the production and removal of formic acid. Our study highlights the importance of reactive environments, which can transform the surface structures and thus tune the activity/selectivity of catalysts.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Xuelong Wang
- Chemistry Division, Brookhaven National Lab, Upton, NY 11973, USA
| | - Ping Liu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA. .,Chemistry Division, Brookhaven National Lab, Upton, NY 11973, USA
| |
Collapse
|
9
|
Kowalec I, Kabalan L, Catlow CRA, Logsdail AJ. A computational study of direct CO 2 hydrogenation to methanol on Pd surfaces. Phys Chem Chem Phys 2022; 24:9360-9373. [PMID: 35383806 DOI: 10.1039/d2cp01019d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction mechanism of direct CO2 hydrogenation to methanol is investigated in detail on Pd (111), (100) and (110) surfaces using density functional theory (DFT), supporting investigations into emergent Pd-based catalysts. Hydrogen adsorption and surface mobility are firstly considered, with high-coordination surface sites having the largest adsorption energy and being connected by diffusion channels with low energy barriers. Surface chemisorption of CO2, forming a partially charged CO2δ-, is weakly endothermic on a Pd (111) whilst slightly exothermic on Pd (100) and (110), with adsorption enthalpies of 0.09, -0.09 and -0.19 eV, respectively; the low stability of CO2δ- on the Pd (111) surface is attributed to negative charge accumulating on the surface Pd atoms that interact directly with the CO2δ- adsorbate. Detailed consideration for sequential hydrogenation of the CO2 shows that HCOOH hydrogenation to H2COOH would be the rate determining step in the conversion to methanol, for all surfaces, with activation barriers of 1.41, 1.51, and 0.84 eV on Pd (111), (100) and (110) facets, respectively. The Pd (110) surface exhibits overall lower activation energies than the most studied Pd (111) and (100) surfaces, and therefore should be considered in more detail in future Pd catalytic studies.
Collapse
Affiliation(s)
- Igor Kowalec
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - Lara Kabalan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | - C Richard A Catlow
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK. .,UK Catalysis Hub, Research Complex at Harwell, RAL, Oxford, OX11 0FA, UK.,Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Andrew J Logsdail
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| |
Collapse
|
10
|
Ni Nanoparticles on Reducible Metal Oxides (Sm2O3, CeO2, ZnO) as Catalysts for CO2 Methanation. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.3.10948.641-650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activity of reducible metal oxide Sm2O3, CeO2, and ZnO as Ni nanoparticles support was investigated for CO2 methanation reaction. CO2 methanation was carried out between 200 °C to 450 °C with the optimum catalytic activity was observed at 450 °C. The reducibility of the catalysts has been comparatively studied using H2-Temperature Reduction Temperature (TPR) method. The H2-TPR analysis also elucidated the formation of surface oxygen vacancies at temperature above 600 °C for 5Ni/Sm2O3 and 5Ni/CeO2. The Sm2O3 showed superior activity than CeO2 presumably due to the transition of the crystalline phases under reducing environment. However, the formation of NiZn alloy in 5Ni/ZnO reduced the ability of Ni to catalyze methanation reaction. A highly dispersed Ni on Sm2O3 created a large metal/support interfacial interaction to give 69% of CO2 conversion with 100% selectivity at 450 °C. The 5Ni/Sm2O3 exhibited superior catalytic performances with an apparent phase transition from cubic to a mixture of cubic and monoclinic phases over a long reaction, presumably responsible for the enhanced conversion after 10 h of reaction. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
11
|
Zhao B, Sun M, Chen F, Wang W, Lu S, Zhang B. Photoinduced Reaction Pathway Change for Boosting CO 2 Hydrogenation over a MnO-Co Catalyst. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02644] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Bohang Zhao
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Mengyao Sun
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Fanpeng Chen
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Weichao Wang
- College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450000, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| |
Collapse
|
12
|
Liu J, Qiao Q, Chen X, Ke Q. PdZn bimetallic nanoparticles for CO2 hydrogenation to methanol: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Fabrication of PdZn alloy catalysts supported on ZnFe composite oxide for CO 2 hydrogenation to methanol. J Colloid Interface Sci 2021; 597:260-268. [PMID: 33872882 DOI: 10.1016/j.jcis.2021.03.135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/23/2021] [Indexed: 11/23/2022]
Abstract
The conversion of CO2 to methanol is of great significance for providing a means of CO2 fixation and the development of future fuels. Supported Pd catalysts have been demonstrated to be active for CO2 hydrogenation to methanol and PdZn alloy plays a key role in this reaction. Therefore, using ZnO-enriched support to increase the amount of nanometric PdZn alloy particles on the surface is an effective strategy to develop ideal catalysts. Herein, we fabricated a PdZn alloy catalyst supported on ZnO-enriched ZnFe2O4 spinel for efficient CO2 hydrogenation to methanol. The amount of formed PdZn alloy and catalyst structure influenced by ZnO concentration on ZnFe2O4 were explored to obtain the best Pd-Z1FO catalyst, which achieves a methanol space-time yield (STY) of 593 gkgcat-1h-1 (12 ggPd-1h-1) with CO2 conversion of 14% under reaction conditions of 290 °C, 4.5 MPa and 21600 mLg-1h-1. Furthermore, the amount of exposed PdZn alloy sites were measured by using CO-pulse chemisorption and we find a linearity between methanol production rate and PdZn alloy sites.
Collapse
|
14
|
Ke J, Wang YD, Wang CM. First-principles microkinetic simulations revealing the scaling relations and structure sensitivity of CO 2 hydrogenation to C 1 & C 2 oxygenates on Pd surfaces. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
CO2 hydrogenation to alcohols and other oxygenates on Pd(211) and Pd(111) surfaces was studied by microkinetic modelling. Energy scaling relations on two surfaces were established. Activity plots as a function of reaction conditions were identified.
Collapse
Affiliation(s)
- Jun Ke
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Yang-Dong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| | - Chuan-Ming Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis
- Sinopec Shanghai Research Institute of Petrochemical Technology
- Shanghai 201208
- China
| |
Collapse
|