1
|
Hu M, Zhang Y, Meng N, Wang W, Lu Y, Dong J, Zhao S, Qiao B, Song D, Xu Z. Modulation Phase Distribution of Ruddlesden-Popper Quasi-2D Perovskites with a Similarly Spaced Dion-Jacobson Phase. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42706-42716. [PMID: 37646254 DOI: 10.1021/acsami.3c03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites exhibit excellent performance when applied to light-emitting diodes (LEDs). However, quasi-2D perovskite films generally have nonuniform n phases and irregular internal crystal structures, which degrade the device's performance. Here, we propose using a Dion-Jacobson (DJ)-type organic spacer to modulate the phase distribution of the Ruddlesden-Popper (RP) quasi-2D perovskite. A DJ-type organic spacer cation, 1.6-hexamethylenediamine (HDABr2), was introduced into the perovskite as the second spacer cation with propylamine hydrobromide (PABr). As DJ-type and RP-type perovskites have similar spacings, RP-DJ style does not cause a chaotic crystalline structure; instead, it modulates the perovskite crystallization and narrows the phase distribution. In parallel, there is a substantial improvement in the maximum luminance, current efficiency, external quantum efficiency, and device stability of the quasi-2D perovskite LEDs. This work provides a novel concept for combining the organic spacer cations for quasi-2D perovskites.
Collapse
Affiliation(s)
- Mengli Hu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yu Zhang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Ning Meng
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Wei Wang
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Yao Lu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Jie Dong
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Suling Zhao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Bo Qiao
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Dandan Song
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| | - Zheng Xu
- Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
| |
Collapse
|
2
|
Ye D, Li Z, Chen W, Ighodalo KO, Xiao P, Chen T, Xiao Z. Stable Yellow Light-Emitting Diodes Based on Quasi-Two-Dimensional Perovskites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34918-34925. [PMID: 35868005 DOI: 10.1021/acsami.2c07314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) show great potential in display and lighting because of their tunable wavelength, narrow emission bandwidths, and high color purity. Currently, the external quantum efficiency (EQE) of red and green PeLEDs has reached >23%. However, yellow PeLEDs are still rarely reported because of phase separation in mixed-halide perovskites and the coexistence of multiple phases in quasi-two-dimensional (quasi-2D) perovskites L2An-1BnX3n+1 (n = 1, 2, 3, ...), where L is a bulky organoammonium ligand. Here, we fabricate stable yellow PeLEDs by manipulating the phase distribution and incorporating rubidium cations (Rb+) in quasi-2D perovskites. The transient absorption results confirm that alkylammonium ligand butyl ammonium (BA) has a narrower phase distribution than phenylethyl ammonium (PEA) in the quasi-2D perovskites, resulting in a more blue-shifted emission peak. We further incorporate a proper molar ratio of Rb+ in the (BA)2CsPb2I7 perovskite to blue-shift the emission peak to the yellow range. Finally, the yellow PeLEDs exhibit an EQE of 3.5%, and the stable emission peak is located at 595 nm. Our work provides a useful approach for the fabrication of highly efficient and stable yellow PeLEDs.
Collapse
Affiliation(s)
- Dan Ye
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhijian Li
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenjing Chen
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kester O Ighodalo
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng Xiao
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Chen
- Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengguo Xiao
- Department of Physics, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Sun Q, Zhao C, Yin Z, Wang S, Leng J, Tian W, Jin S. Ultrafast and High-Yield Polaronic Exciton Dissociation in Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19128-19136. [PMID: 34730344 DOI: 10.1021/jacs.1c08900] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Layered two-dimensional (2D) lead halide perovskites are a class of quantum well (QW) materials, holding dramatic potentials for optical and optoelectronic applications. However, the thermally activated exciton dissociation into free carriers in 2D perovskites, a key property that determines their optoelectronic performance, was predicted to be weak due to large exciton binding energy (Eb, about 100-400 meV). Herein, in contrast to the theoretical prediction, we discover an ultrafast (<1.4 ps) and highly efficient (>80%) internal exciton dissociation in (PEA)2(MA)n-1PbnI3n+1 (PEA = C6H5C2H4NH3+, MA = CH3NH3+, n = 2-4) 2D perovskites despite the large Eb. We demonstrate that the exciton dissociation activity in 2D perovskites is significantly promoted because of the formation of exciton-polarons with considerably reduced exciton binding energy (down to a few tens of millielectronvolts) by the polaronic screening effect. This ultrafast and high-yield exciton dissociation limits the photoluminescence of 2D perovskites but on the other hand well explains their exceptional performance in photovoltaic devices. The finding should represent a common exciton property in the 2D hybrid perovskite family and provide a guideline for their rational applications in light emitting and photovoltaics.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyi Zhao
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu 241002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|