1
|
Ghosal S, Nandi S, Giri PK. Recent advances in semiconductor nanostructure-based surface-enhanced Raman scattering sensors. NANOTECHNOLOGY 2025; 36:202002. [PMID: 40215997 DOI: 10.1088/1361-6528/adcbaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has become a transformative analytical tool, attracting growing interest for its wide-ranging applications. The development of SERS-active materials is now a central research area, spurring innovation in various types of SERS substrates. While noble metal-based substrates remain extensively studied, semiconductor-based, non-metal substrates are garnering attention due to their unique advantages: excellent chemical stability, high carrier mobility, biocompatibility, and precise fabrication control. However, their generally weaker enhancement effects limit their utility, underscoring the need for strategies to boost their SERS activity. Understanding the complex enhancement mechanisms in semiconductor-based SERS substrates is critical for designing next-generation materials with metal-like enhancement factors (EFs). The interplay of charge transfer, localized surface plasmon resonance, and photonic effects makes the enhancement process inherently challenging to unravel. Therefore, the search for new materials with exciting optoelectronic properties, as well as more innovative solutions to increase their SERS sensitivity, continues to grow. In this review, we explore the latest advancements in semiconductor-based SERS substrates, dissecting the complex enhancement mechanisms and various modification strategies aimed at achieving metal-like high EFs. We present a comprehensive analysis of the methods used to improve the SERS performance of semiconductor substrates and conclude with potential future directions for advancing this dynamic field.
Collapse
Affiliation(s)
- Sirsendu Ghosal
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Huang SM, Tu TY, Wang PC, Chou M, Li CY, Wu HT, Hsieh YC, Chen RS. The surface oxidation effect on photocurrent in WSe 1.95Te 0.05 nanosheets. iScience 2024; 27:111461. [PMID: 39717092 PMCID: PMC11664151 DOI: 10.1016/j.isci.2024.111461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/16/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
Surface oxidation effect on photocurrent responsibility was detected in WSe1.95Te0.05 nanosheets, and the photocurrent response depends on the light wavelength. It is enhanced at the wavelength of 405 nm, while showing no change at the wavelength of 532 nm and suppressed at the wavelength of 808 nm. The incident photon-to-current efficiency (IPCE) is expected to increase at 405 nm wavelength, remain unchanged at 532 nm wavelength, and decrease at 808 nm wavelength. Therefore, WO3 contributes to the intrinsic properties. The trend of photocurrent change after half-year exposure corresponds to the absorbance change from pristine WSe1.95Te0.05 to WO3. The wavelength-dependent photocurrent responsibility is understood as the wavelength-dependent IPCE of WO3 that is from the surface-oxidized WSe1.95Te0.05.
Collapse
Affiliation(s)
- Shiu-Ming Huang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tzu-Yueh Tu
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Pin-Cing Wang
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Mitch Chou
- Center of Crystal Research, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng-Kung University, Tainan 70101, Taiwan
| | - Chang-Yu Li
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Hao-Ting Wu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yue-Cheng Hsieh
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ruei-San Chen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
3
|
Tang X, Hao Q, Hou X, Lan L, Li M, Yao L, Zhao X, Ni Z, Fan X, Qiu T. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312348. [PMID: 38302855 DOI: 10.1002/adma.202312348] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is an ultrasensitive surface analysis technique that is widely used in chemical sensing, bioanalysis, and environmental monitoring. The design of the SERS substrates is crucial for obtaining high-quality SERS signals. Recently, 2D transition metal dichalcogenides (2D TMDs) have emerged as high-performance SERS substrates due to their superior stability, ease of fabrication, biocompatibility, controllable doping, and tunable bandgaps and excitons. In this review, a systematic overview of the latest advancements in 2D TMDs SERS substrates is provided. This review comprehensively summarizes the candidate 2D TMDs SERS materials, elucidates their working principles for SERS, explores the strategies to optimize their SERS performance, and highlights their practical applications. Particularly delved into are the material engineering strategies, including defect engineering, alloy engineering, thickness engineering, and heterojunction engineering. Additionally, the challenges and future prospects associated with the development of 2D TMDs SERS substrates are discussed, outlining potential directions that may lead to significant breakthroughs in practical applications.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- Department of Chemistry, National University of Singapore, Singapore, 117542, Singapore
| | - Leilei Lan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan, 232001, China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| |
Collapse
|
4
|
Xu Y, Chen R, Jiang S, Zhou L, Jiang T, Gu C, Ang DS, Petti L, Zhang Q, Shen X, Han J, Zhou J. Insights into the Semiconductor SERS Activity: The Impact of the Defect-Induced Energy Band Offset and Electron Lifetime Change. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42026-42036. [PMID: 37612785 DOI: 10.1021/acsami.3c06363] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The significant boost in surface-enhanced Raman scattering (SERS) by the chemical enhancement of semiconducting oxides is a pivotal finding. It offers a prospective path toward high uniformity and low-cost SERS substrates. However, a detailed understanding of factors that influence the charge transfer process is still insufficient. Herein, we reveal the important role of defect-induced band offset and electron lifetime change in SERS evolution observed in a MoO3 oxide semiconductor. By modulating the density of oxygen vacancy defects using ultraviolet (UV) light irradiation, SERS is found to be improved with irradiation time in the first place, but such improvement later deteriorates for prolonged irradiation even if more defects are generated. Insights into the observed SERS evolution are provided by ultraviolet photoelectron spectroscopy and femtosecond time-resolved transient absorption spectroscopy measurements. Results reveal that (1) a suitable offset between the energy band of the substrate and the orbitals of molecules is facilitated by a certain defect density and (2) defect states with relatively long electron lifetime are essential to achieve optimal SERS performance.
Collapse
Affiliation(s)
- Yinghao Xu
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Renli Chen
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shenlong Jiang
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Lu Zhou
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
- Institute of Applied Sciences and Intelligent Systems-ISASI, CNR, via Campi Flegrei, 34, 80078 Pozzuoli, Napoli Italy
| | - Tao Jiang
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chenjie Gu
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Diing Shenp Ang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore
| | - Lucia Petti
- Institute of Applied Sciences and Intelligent Systems-ISASI, CNR, via Campi Flegrei, 34, 80078 Pozzuoli, Napoli Italy
| | - Qun Zhang
- Department of Chemical Physics, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Xiang Shen
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiaguang Han
- Centre for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Zhou
- Institute of Photonics, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
5
|
Tang X, Fan X, Zhou J, Wang S, Li M, Hou X, Jiang K, Ni Z, Zhao B, Hao Q, Qiu T. Alloy Engineering Allows On-Demand Design of Ultrasensitive Monolayer Semiconductor SERS Substrates. NANO LETTERS 2023; 23:7037-7045. [PMID: 37463459 DOI: 10.1021/acs.nanolett.3c01810] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The chemical mechanism (CM) of surface-enhanced Raman scattering (SERS) has been recognized as a decent approach to mildly amplify Raman scattering. However, the insufficient charge transfer (CT) between the SERS substrate and molecules always results in unsatisfying Raman enhancement, exerting a substantial restriction for CM-based SERS. In principle, CT is dominated by the coupling between the energy levels of a semiconductor-molecule system and the laser wavelength, whereas precise tuning of the energy levels is intrinsically difficult. Herein, two-dimensional transition-metal dichalcogenide alloys, whose energy levels can be precisely and continuously tuned over a wide range by simply adjusting their compositions, are investigated. The alloys enable on-demand construction of the CT resonance channels to cater to the requirements of a specific target molecule in SERS. The SERS signals are highly reproducible, and a clear view of the SERS dependences on the energy levels is revealed for different CT resonance terms.
Collapse
Affiliation(s)
- Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jun Zhou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Shuo Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Mingze Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiangyu Hou
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Kewei Jiang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Zhenhua Ni
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Bei Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
6
|
Su R, Yang S, Han D, Hu M, Liu Y, Yang J, Gao M. Ni and O co-modified MoS 2 as universal SERS substrate for the detection of different kinds of substances. J Colloid Interface Sci 2023; 635:1-11. [PMID: 36577350 DOI: 10.1016/j.jcis.2022.12.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has attracted extensive attention as an ultrasensitive detection method. However, the poor biocompatibility and expensive synthesis cost of noble metal SERS substrates have become non-negligible factors that limit the development of SERS technology. Metal chalcogenide semiconductors as an alternative to noble metal SERS substrates can avoid these disadvantages, but the enhancement effect is lower than that of noble metal substrates. Here, we report a method to co-modify MoS2 by Ni and O, which improves the carrier concentration and mobility of MoS2. The SERS effect of the modified MoS2 is comparable to that of noble metals. We found that the improved SERS performance of MoS2 can be attributed to the following two factors: strong interfacial dipole-dipole interaction and efficient charge transfer effect. During the doping process, the incorporation of Ni and O enhances the polarity and carrier concentration of MoS2, enhances the interfacial interaction of MoS2, and provides a basis for charge transfer. During the annealing process, the introduction of O atoms into the S defects reduces the internal defects of doped MoS2, improves the carrier mobility, and promotes the efficient charge transfer effect of MoS2. The final modified MoS2 as a SERS substrate realizes low-concentration detection of bilirubin, cytochrome C, and trichlorfon. This provides promising guidance for the practical inspection of metal chalcogenide semiconductor substrates.
Collapse
Affiliation(s)
- Rui Su
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China
| | - Donglai Han
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, PR China
| | - Mingyue Hu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310012, PR China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
7
|
Xie S, Chen D, Gu C, Jiang T, Zeng S, Wang YY, Ni Z, Shen X, Zhou J. Molybdenum Oxide/Tungsten Oxide Nano-heterojunction with Improved Surface-Enhanced Raman Scattering Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33345-33353. [PMID: 34232012 DOI: 10.1021/acsami.1c03848] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
By virtue of their high uniformity and stability, metal oxide-based surface-enhanced Raman spectroscopy (SERS) substrates have attracted enormous attention for molecular trace detection. However, strategies for further enhancing the SERS sensitivity are still desired. Herein, MoOx/WOx nano-heterojunctions are constructed by mixing MoOx and WOx together (MoOx/WOx hybrid) with diverse weight ratios. Using a 532 nm laser as the excitation source and R6G as the Raman reporter, it is shown that the Raman signal intensity (for the peak @ 1360 cm-1) obtained on the optimal MoOx/WOx hybrid (MoOx/WOx = 1:1/3) is twice that observed on a pure MoOx or WOx substrate. Moreover, a limit of detection of 10-8 M and an enhancement factor of 108 are achieved. In the SERS enhancement mechanism investigation, it is revealed that MoOx and WOx form a staggered band structure. During the SERS measurement, electron-hole pairs are generated in the nano-heterojunction using the incident laser. They are then separated by the built-in potential with the electrons moving toward WOx. The accumulated electrons on WOx are further transferred to the R6G molecules through the coupling of orbitals. Consequently, the molecular polarizability is amplified, and SERS performance is enhanced. The abovementioned explanation is supported by the evidence that the contribution of the chemical enhancement mechanism in the optimal MoOx/WOx hybrid substrate is about 2.5 times or 5.9 times that in the pure WOx or MoOx substrate.
Collapse
Affiliation(s)
- Songyang Xie
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| | - Dong Chen
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| | - Chenjie Gu
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| | - Tao Jiang
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| | - Shuwen Zeng
- XLIM Research Institute, CNRS/University of Limoges, Avenue Albert Thomas, 87060 Limoges, France
| | - Ying Ying Wang
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhenhua Ni
- School of Physics, Southeast University, No. 2 SEU Road, Nanjing 211189, China
| | - Xiang Shen
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| | - Jun Zhou
- The Photonic Research Institute, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China
| |
Collapse
|