1
|
Huang D, Lei J, Zhang N, Huang X, Wu S, Schiffbauer JE, Yue Y. Tunable Photothermal Bubble Formation in Binary Liquids under Pulsed Laser Excitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:6268-6276. [PMID: 40016096 DOI: 10.1021/acs.langmuir.4c05379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Photothermal microbubbles triggered by pulsed laser heating are critical for diverse applications spanning microfluidics, medical technologies, and materials engineering. Yet controlling their prolonged growth remains challenging due to the intricate interplay between liquid phase transition, dissolved gas diffusion, and convective heat transfer. Here, we systematically examine microbubble expansion in an ethanol-butanol solution by tuning the boiling point and viscosity. Through the variation of the boiling point and viscosity of the binary solution (ethanol/butanol), it was found that the liquid phase transition, dissolved gas diffusion, and convective heat exchange dominated the different growth stages of the micrometer bubbles, respectively. The rapid expansion phase is predominantly influenced by the liquid phase; however, the boiling point plays a crucial role in determining the transition rate between the two phases. A higher boiling point accelerates the transition from rapid expansion to slow diffusion phases, and the viscosity significantly affects the growth rate of bubbles during the slow diffusion phase. In high-viscosity solutions, bubble growth in this phase is influenced by a combination of dissolved gas diffusion and convective cooling of the liquid. Prior studies have concentrated on the immediate bubble growth triggered by pulsed lasers; the outcomes of this study offer insights into forecasting and tuning the evolution of photothermal bubbles.
Collapse
Affiliation(s)
- Dezhao Huang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Jiajie Lei
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Nan Zhang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaona Huang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Shijing Wu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| | - Jarrod E Schiffbauer
- Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave, Grand Junction, Colorado 81501, United States
| | - Yanan Yue
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China
- Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, Ohio 45056, United States
- Institute for Goneo New Energy, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Belousov VV, Fedorov SV. Solutocapillary transport of oxygen bubbles in a diffusion-bubbling membrane core. Phys Chem Chem Phys 2024; 26:2870-2876. [PMID: 38206117 DOI: 10.1039/d3cp04683d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Bubbles are extensively explored as gas and energy carriers. However, despite notable progress, the bubble transport mechanisms are still poorly understood. At the present time there is not sufficient understanding of whether the body or surface forces play a major role in bubble transport in liquid interfacial systems. This understanding is important to be able to drive oxygen bubble transport. Here, we show the crucial role of solutocapillary forces in oxygen bubble transport in the core of a diffusion-bubbling membrane with a high density of solid/liquid and gas/liquid interfaces that operates under the oxygen chemical potential gradient. In order to describe the transport of oxygen bubbles in the membrane core, we developed a mathematical model. Both the velocity of bubbles and oxygen flux through this membrane predicted by this model agree with experiments. An in-depth understanding of the bubble transport mechanism presented in this study could eventually lead the way to more efficient bubble membrane gas separation, bubble energy generation, and bubble-assisted therapy in the future.
Collapse
Affiliation(s)
- Valery V Belousov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninskii Pr., 119334 Moscow, Russian Federation.
| | - Sergey V Fedorov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 49 Leninskii Pr., 119334 Moscow, Russian Federation.
| |
Collapse
|
3
|
Gutiérrez-Varela O, Lombard J, Biben T, Santamaria R, Merabia S. Vapor Nanobubbles around Heated Nanoparticles: Wetting Dependence of the Local Fluid Thermodynamics and Kinetics of Nucleation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18263-18275. [PMID: 38061075 DOI: 10.1021/acs.langmuir.3c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Plasmonic nanobubbles are composite objects resulting from the interaction between light and metallic nanoparticles immersed in a fluid. Plasmonic nanobubbles have applications in photothermal therapies, drug delivery, microfluidic manipulations, and solar energy conversion. Their early formation is, however, barely characterized due to the short time and length scales relevant to the process. Here, we investigate, using molecular dynamics (MD) simulations, the effect of nanoparticle wettability on both the local fluid thermodynamics and the kinetics of nanobubble generation in water. We first show that the local onset temperature of vapor nucleation decreases with the nanoparticle/water interfacial energy and may be 100 K below the water spinodal temperature in the case of weak nanoparticle/water interactions. Second, we demonstrate that vapor nucleation may be slower in the case of weak water/nanoparticle interactions. This result, which is qualitatively at odds with the predictions of isothermal classical nucleation theory, may be explained by the competition between two antagonist effects: while, classically, hydrophobicity increases the vapor nucleation rate, it also penalizes interfacial thermal transfer, slowing down kinetics. The kinetics of heat transfer from the nanoparticle to water is controlled by the interfacial thermal conductance. This quantity turns out not only to decrease with the nanoparticle hydrophobicity but also drops down prior to phase change, yielding even longer nucleation times. Such conclusions were reached by considering the comparison between MD and continuous heat transfer models. These results put forward the role of nanoparticle wettability in the generation of plasmonic nanobubbles observed experimentally and open the path to the control of boiling using nanopatterned surfaces.
Collapse
Affiliation(s)
- Oscar Gutiérrez-Varela
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 4510, Mexico
- Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Julien Lombard
- Departamento de Física y Química Teórica and Departamento de Matemáticas, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 4510, Mexico
| | - Thierry Biben
- Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Ruben Santamaria
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 4510, Mexico
| | - Samy Merabia
- Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| |
Collapse
|
4
|
Li X, Wang F, Xia C, The HL, Bomer JG, Wang Y. Laser Controlled Manipulation of Microbubbles on a Surface with Silica-Coated Gold Nanoparticle Array. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2302939. [PMID: 37496086 DOI: 10.1002/smll.202302939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Microbubble generation and manipulation play critical roles in diverse applications such as microfluidic mixing, pumping, and microrobot propulsion. However, existing methods are typically limited to lateral movements on customized substrates or rely on specific liquids with particular properties or designed concentration gradients, thereby hindering their practical applications. To address this challenge, this paper presents a method that enables robust vertical manipulation of microbubbles. By focusing a resonant laser on hydrophilic silica-coated gold nanoparticle arrays immersed in water, plasmonic microbubbles are generated and detach from the substrates immediately upon cessation of laser irradiation. Using simple laser pulse control, it can achieve an adjustable size and frequency of bubble bouncing, which is governed by the movement of the three-phase contact line during surface wetting. Furthermore, it demonstrates that rising bubbles can be pulled back by laser irradiation induced thermal Marangoni flow, which is verified by particle image velocimetry measurements and numerical simulations. This study provides novel insights into flexible bubble manipulation and integration in microfluidics, with significant implications for various applications including mixing, drug delivery, and the development of soft actuators.
Collapse
Affiliation(s)
- Xiaolai Li
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Fulong Wang
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Chenliang Xia
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
| | - Hai Le The
- BIOS Lab-on-a-chip, University of Twente, Enschede, P.O. Box 217, 7500AE, The Netherlands
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, University of Twente, Enschede, P.O. Box 217, 7500AE, The Netherlands
| | - Johan G Bomer
- BIOS Lab-on-a-chip, University of Twente, Enschede, P.O. Box 217, 7500AE, The Netherlands
| | - Yuliang Wang
- Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, P. R. China
- Ningbo Institute of Technology, Beihang University, Ningbo, 315832, P. R. China
| |
Collapse
|
5
|
Li X, Chen Y, Wang Y, Chong KL, Verzicco R, Zandvliet HJW, Lohse D. Droplet plume emission during plasmonic bubble growth in ternary liquids. Phys Rev E 2021; 104:025101. [PMID: 34525659 DOI: 10.1103/physreve.104.025101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/07/2021] [Indexed: 11/07/2022]
Abstract
Plasmonic bubbles are of great relevance in numerous applications, including catalytic reactions, micro/nanomanipulation of molecules or particles dispersed in liquids, and cancer therapeutics. So far, studies have been focused on bubble nucleation in pure liquids. Here we investigate plasmonic bubble nucleation in ternary liquids consisting of ethanol, water, and trans-anethole oil, which can show the so-called ouzo effect. We find that oil (trans-anethole) droplet plumes are produced around the growing plasmonic bubbles. The nucleation of the microdroplets and their organization in droplet plumes is due to the symmetry breaking of the ethanol concentration field during the selective evaporation of ethanol from the surrounding ternary liquids into the growing plasmonic bubbles. Numerical simulations show the existence of a critical Marangoni number Ma (the ratio between solutal advection rate and the diffusion rate), above which the symmetry breaking of the ethanol concentration field occurs, leading to the emission of the droplet plumes. The numerical results agree with the experimental observation that more plumes are emitted with increasing ethanol-water relative weight ratios and hence Ma. Our findings on the droplet plume formation reveal the rich phenomena of plasmonic bubble nucleation in multicomponent liquids and help to pave the way to achieve enhanced mixing in multicomponent liquids in chemical, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Xiaolai Li
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.,School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China
| | - Yibo Chen
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Yuliang Wang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, China
| | - Kai Leong Chong
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands
| | - Roberto Verzicco
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.,Dipartimento di Ingegneria Industriale, University of Rome 'Tor Vergata,' Roma 00133, Italy.,Gran Sasso Science Institute-Viale F. Crispi, 7 67100 L'Aquila, Italy
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids, Max Planck Center Twente for Complex Fluid Dynamics and J.M. Burgers Centre for Fluid Mechanics, MESA+ Institute, University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.,Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Zeng B, Wang Y, Zaytsev ME, Xia C, Zandvliet HJW, Lohse D. Giant plasmonic bubbles nucleation under different ambient pressures. Phys Rev E 2020; 102:063109. [PMID: 33466073 DOI: 10.1103/physreve.102.063109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/08/2020] [Indexed: 11/07/2022]
Abstract
Water-immersed gold nanoparticles irradiated by a laser can trigger the nucleation of plasmonic bubbles after a delay time of a few microseconds [Wang et al., Proc. Natl. Acad. Sci. USA 122, 9253 (2018)]. Here we systematically investigated the light-vapor conversion efficiency, η, of these plasmonic bubbles as a function of the ambient pressure. The efficiency of the formation of these initial-phase and mainly water-vapor containing bubbles, which is defined as the ratio of the energy that is required to form the vapor bubbles and the total energy dumped in the gold nanoparticles before nucleation of the bubble by the laser, can be as high as 25%. The amount of vaporized water first scales linearly with the total laser energy dumped in the gold nanoparticles before nucleation, but for larger energies the amount of vaporized water levels off. The efficiency η decreases with increasing ambient pressure. The experimental observations can be quantitatively understood within a theoretical framework based on the thermal diffusion equation and the thermal dynamics of the phase transition.
Collapse
Affiliation(s)
- Binglin Zeng
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China.,Physics of Fluids Group, Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China.,Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Yuliang Wang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China.,Physics of Fluids Group, Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China
| | - Mikhail E Zaytsev
- Physics of Fluids Group, Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Chenliang Xia
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, China
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Department of Applied Physics and J. M. Burgers Centre for Fluid Dynamics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.,Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|