1
|
Chu S, Xia M, Xu P, Lin D, Jiang Y, Lu Y. Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal Bioanal Chem 2024; 416:6067-6077. [PMID: 38108842 DOI: 10.1007/s00216-023-05077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst's surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2•-) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10-7 M∙S-1 and 4.54 × 10-8 M∙S-1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 μM and 0.025 μM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.
Collapse
Affiliation(s)
- Shushu Chu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Mingyuan Xia
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Peng Xu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Dalei Lin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
2
|
Wang Q, Liu X, Tao S, Wang H, Lu S, Xiang Y, Zhang J. Machine Learning Study on Microwave-Assisted Batch Preparation and Oxygen Reduction Performance of Fe-N-C Catalysts. J Phys Chem Lett 2023; 14:9082-9089. [PMID: 37788256 DOI: 10.1021/acs.jpclett.3c02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The Fe-N-C catalyst represents one of the most promising candidates for replacing platinum-based catalysts toward the oxygen reduction reaction. The pivotal factor in the successful integration of Fe-N-C catalysts within applications is the attainment of a large-scale production capability. Microwave-assisted pyrolysis offers various advantages, including enhanced energy and time efficiency, uniform heating, and high yield in single-batch processes. These characteristics render it exceptionally suitable for the mass production of catalysts. Through a synergistic approach involving machine learning techniques and microscopic characterization, we discerned performance trends and underlying mechanisms within batch-synthesized Fe-N-C catalysts under microwave-assisted preparation conditions. Machine learning analysis revealed that the precursor mass exerts the most substantial influence on product performance. Furthermore, microscopic characterization unveiled that these influencing factors impact catalyst performance by modulating the degree of agglomeration. Our research introduces an efficacious machine learning model for prognosticating performance and dissecting the influencing factors pertinent to Fe-N-C catalyst synthesis within a microwave system.
Collapse
Affiliation(s)
- Qingxin Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Xinrui Liu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Siying Tao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| | - Haining Wang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Yan Xiang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Energy and Power Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, People's Republic of China
| |
Collapse
|
3
|
Li Z, Ji S, Xu C, Leng L, Liu H, Horton JH, Du L, Gao J, He C, Qi X, Xu Q, Zhu J. Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209644. [PMID: 36533780 DOI: 10.1002/adma.202209644] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Rechargeable zinc-air batteries typically require efficient, durable, and inexpensive bifunctional electrocatalysts to support oxygen reduction/evolution reactions (ORR/OER). However, sluggish kinetics and mass transportation challenges must be addressed if the performance of these catalysts is to be enhanced. Herein, a strategy to fabricate a catalyst comprising atomically dispersed iron atoms supported on a mesoporous nitrogen-doped carbon support (Fe SAs/NC) with accessible metal sites and optimized electronic metal-support interactions is developed. Both the experimental results and theoretical calculations reveal that the engineered electronic structures of the metal active sites can regulate the charge distribution of Fe centers to optimize the adsorption/desorption of oxygenated intermediates. The Fe SAs/NC containing Fe1 N4 O1 sites achieves remarkable ORR activity over the entire pH range, with half-wave potentials of 0.93, 0.83, and 0.75 V (vs reversible hydrogen electrode) in alkaline, acidic, and neutral electrolytes, respectively. In addition, it demonstrates a promising low overpotential of 320 mV at 10 mA cm-2 for OER in alkaline conditions. The zinc-air battery assembled with Fe SAs/NC exhibits superior performance than that of Pt/C+RuO2 counterpart in terms of peak power density, specific capacity, and cycling stability. These findings demonstrate the importance of the electronic structure engineering of metal sites in directing catalytic activity.
Collapse
Affiliation(s)
- Zhijun Li
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Siqi Ji
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Chang Xu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Leipeng Leng
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Hongxue Liu
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - J Hugh Horton
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
- Department of Chemistry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Lei Du
- Huangpu Hydrogen Energy Innovation Centre, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Jincheng Gao
- Joint International Research Laboratory of Advanced Chemical Catalytic Materials & Surface Science, College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing, 163318, P. R. China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoying Qi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Qian Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Junfa Zhu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
4
|
Ordered mesoporous carbon fiber bundles with high-density and accessible Fe-NX active sites as efficient ORR catalysts for Zn-air batteries. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
5
|
Zhang X, Su K, Chen X, Li J, Wang B, Luo Z, Qian D, Li J, Liu J. A Hybrid of the Fe 4N-Fe Heterojunction Supported on N-Doped Carbon Nanobelts and Ketjen Black Carbon as a Robust High-Performance Electrocatalyst. J Phys Chem Lett 2022; 13:11118-11127. [PMID: 36441953 DOI: 10.1021/acs.jpclett.2c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, an extremely simple l-alanine-assisted pyrolysis method was proposed for the construction of a novel hierarchically porous hybrid of Fe4N-Fe supported on N-doped carbon nanobelts and Ketjen black carbon (denoted as Fe4N-Fe@N-C/N-KB). It has been found that the participation of l-alanine in pyrolysis can dramatically increase the total pyridinic-N/graphitic-N content in Fe4N-Fe@N-C/N-KB, which is peculiarly conducive to the enhancement of ORR performance. The in-site formation of the Fe4N-Fe heterojunction via the thermal reduction and decomposition of Fe3N as well as the introduction of cheap KB can significantly improve the ORR performance. As a result, the activity, durability, and methanol tolerance of this hybrid are comprehensively better than those of commercial 20 wt % Pt/C, promising future applications in practical devices. Density functional theory calculations disclose that the highly improved ORR activity of Fe4N-Fe@N-C/N-KB also benefits from the favorable electron penetration and excellent electronic conductivity between the Fe4N nanoparticles and the N-incorporated carbon frameworks.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Kanda Su
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bowen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Jiao P, Ye D, Zhu C, Wu S, Qin C, An C, Hu N, Deng Q. Non-precious transition metal single-atom catalysts for the oxygen reduction reaction: progress and prospects. NANOSCALE 2022; 14:14322-14340. [PMID: 36106572 DOI: 10.1039/d2nr03687h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The massive exploitation and use of fossil resources have created many negative issues, such as energy shortage and environmental pollution. It prompts us to turn our attention to the development of new energy technologies. This review summarizes the recent research progress of non-precious transition metal single-atom catalysts (NPT-SACs) for the oxygen reduction reaction (ORR) in Zn-air batteries and fuel cells. Some commonly used preparation methods and their advantages/disadvantages have been summarized. The factors affecting the ORR performances of NPT-SACs have been focused upon, such as the substrate type, coordination environment and nanocluster effects. The loading mass of a metal atom has a direct effect on the ORR performances. Some general strategies for stabilizing metal atoms are included. This review points out some existing challenges of NPT-SACs, and also provides ideas for designing and synthesizing NPT-SACs with excellent ORR performances. The large-scale preparation and commercialization of NPT-SACs with excellent ORR properties are prospected.
Collapse
Affiliation(s)
- Penggang Jiao
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Donghao Ye
- Wuhan Marine Electric Propulsion Research Institute, Wuhan 430064, China
| | - Chunyou Zhu
- Hunan Aerospace Kaitian Water Services Co., Ltd., Changsha 410100, China
| | - Shuai Wu
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Chunling Qin
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Cuihua An
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin, 300130, China
| | - Qibo Deng
- Key Laboratory of Hebei Province on Scale-span Intelligent Equipment Technology, and School of Mechanical Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
7
|
Li Z, Ma R, Ju Q, Liu Q, Liu L, Zhu Y, Yang M, Wang J. Spin engineering of single-site metal catalysts. Innovation (N Y) 2022; 3:100268. [PMID: 35789959 PMCID: PMC9249949 DOI: 10.1016/j.xinn.2022.100268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022] Open
Abstract
Single-site metal atoms (SMAs) on supports are attracting extensive interest as new catalytic systems because of maximized atom utilization and superior performance. However, rational design of configuration-optimized SMAs with high activity from the perspectives of fundamental electron spin is highly challenging. Herein, N-coordinated Fe single atoms are successfully distributed over axial carbon micropores to form dangling-FeN4 centers (d-FeN4). This unique d-FeN4 demonstrates much higher intrinsic activity toward oxygen reduction reaction (ORR) in HClO4 than FeN4 without micropore underneath and commercial Pt/C. Both theoretical calculation and electronic structure characterization imply that d-FeN4 endows central Fe with medium spin (t2g4 eg1), which provides a spin channel for electron transition compared with FeN4 with low spin. This leads to the facile formation of the singlet state of oxygen-containing species from triplet oxygen during the ORR, thus showing faster kinetics than FeN4. This work provides an in-depth understanding of spin tuning on SMAs for advanced energy catalysis. Single-site FeN4 species are designed to dangle over axial carbon micropores (d-FeN4) d-FeN4 shows much superior oxygen reduction reactivity to traditional FeN4 d-FeN4 facilitates the formation of singlet-state oxygen-containing species with optimized spin states by micropore This work provides in-depth understanding of spin tuning for advanced catalyst design
Collapse
Affiliation(s)
- Zichuang Li
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruguang Ma
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215009, China
- Corresponding author
| | - Qiangjian Ju
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijia Liu
- Department of Chemistry, Western University, 1151 Richmond Street, London, ON N6A 5B7, Canada
| | - Yufang Zhu
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, China
| | - Jiacheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
- Corresponding author
| |
Collapse
|
8
|
Zhang Z, Li H, Wu D, Zhang L, Li J, Xu J, Lin S, Datye AK, Xiong H. Coordination structure at work: Atomically dispersed heterogeneous catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Shen H, Qiu N, Yang L, Guo X, Zhang K, Thomas T, Du S, Zheng Q, Attfield JP, Zhu Y, Yang M. Boosting Oxygen Reduction for High-Efficiency H 2 O 2 Electrosynthesis on Oxygen-Coordinated CoNC Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200730. [PMID: 35324078 DOI: 10.1002/smll.202200730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Atomically dispersed CoNC is a promising material for H2 O2 selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN4 active center is insufficient and needs to be improved further. This can be done by fine-tuning its atomic coordination configuration. Here, a single-atom electrocatalyst (Co/NC) is reported that comprises a specifically penta-coordinated CoNC configuration (OCoN2 C2 ) with Co center coordinated by two nitrogen atoms, two carbon atoms, and one oxygen atom. Using a combination of theoretical predictions and experiments, it is confirmed that the unique atomic structure slightly increases the charge state of the cobalt center. This optimizes the adsorption energy towards *OOH intermediate, and therefore favors the two-electron ORR relevant for H2 O2 electrosynthesis. In neutral solution, the as-synthesized Co/NC exhibits a selectivity of over 90% over a potential ranging from 0.36 to 0.8 V, with a turnover frequency value of 11.48 s-1 ; thus outperforming the state-of-the-art carbon-based catalysts.
Collapse
Affiliation(s)
- Hangjia Shen
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - Nianxiang Qiu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Liu Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuyun Guo
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tiju Thomas
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras Adyar, Chennai, Tamil Nadu, 600036, India
| | - Shiyu Du
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Qifu Zheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China
| | - J Paul Attfield
- Centre for Science at Extreme Conditions and School of Chemistry, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh, EH9 3JZ, UK
| | - Ye Zhu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
10
|
Ma R, Wang J, Tang Y, Wang J. Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. J Phys Chem Lett 2022; 13:168-174. [PMID: 34965122 DOI: 10.1021/acs.jpclett.1c03753] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The oxygen reduction reaction (ORR) is a pivotal half-reaction for full cells and metal-air batteries. However, the intrinsic sluggish kinetics of the ORR inhibits the practical applications of these environmentally friendly energy-conversion devices. Therefore, highly efficient electrocatalysts with low cost are required to promote the ORR process. Carbon materials with single-atom Fe coordinated with N and C (Fe-N-C) stand out from various non-precious electrocatalysts, and great progress of both catalysts design and mechanism understanding has been achieved in the past. In this Perspective, we start with the recent advance in design strategies of active sites in Fe-N-C and emphasize the importance of spatial configuration and electron distribution. We discuss diverse Fe-N-C species as well as their corresponding properties. At last, we give our outlook for the future development of advanced Fe-N-C electrocatalysts.
Collapse
Affiliation(s)
- Ruguang Ma
- School of Materials Science and Engineering, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou 215011, China
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiacheng Wang
- State Key Laboratory of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| |
Collapse
|
11
|
She X, Jinghan G, Gao Y, Tang H, Li K, Wang Y, Wu Z. Axial ligand engineering for highly efficient oxygen reduction catalyst in transition metal-N4 doped graphene. NEW J CHEM 2022. [DOI: 10.1039/d2nj03058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing highly efficient and stable electrocatalysts for oxygen reduction reaction (ORR) is a challenging task in energy conversion technologies. In this work, diverse axial ligands have been used to modify...
Collapse
|
12
|
Li L, Li Y, Huang R, Cao X, Wen Y. Boosting the Electrocatalytic Activity of Fe−Co Dual‐Atom Catalysts for Oxygen Reduction Reaction by Ligand‐Modification Engineering. ChemCatChem 2021. [DOI: 10.1002/cctc.202100989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lei Li
- Department of Physics Xiamen University Xiamen 361005 P. R. China
| | - Yameng Li
- Department of Physics Xiamen University Xiamen 361005 P. R. China
| | - Rao Huang
- Department of Physics Xiamen University Xiamen 361005 P. R. China
| | - Xinrui Cao
- Department of Physics Xiamen University Xiamen 361005 P. R. China
| | - Yuhua Wen
- Department of Physics Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|