1
|
Ogaki T, Matsui Y, Okamoto H, Nishida N, Sato H, Asada T, Naito H, Ikeda H. Machine Learning-Inspired Molecular Design, Divergent Syntheses, and X-Ray Analyses of Dithienobenzothiazole-Based Semiconductors Controlled by S⋅⋅⋅N and S⋅⋅⋅S Interactions. Chemistry 2024; 30:e202401080. [PMID: 39039606 DOI: 10.1002/chem.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Inspired by the previous machine-learning study that the number of hydrogen-bonding acceptor (NHBA) is important index for the hole mobility of organic semiconductors, seven dithienobenzothiazole (DBT) derivatives 1 a-g (NHBA=5) were designed and synthesized by one-step functionalization from a common precursor. X-ray single-crystal structural analyses confirmed that the molecular arrangements of 1b (the diethyl and ethylthienyl derivative) and 1c (the di(n-propyl) and n-propylthienyl derivative) in the crystal are classified into brickwork structures with multidirectional intermolecular charge-transfer integrals, as a result of incorporation of multiple hydrogen-bond acceptors. The solution-processed top-gate bottom-contact devices of 1b and 1c had hole mobilities of 0.16 and 0.029 cm2 V-1s-1, respectively.
Collapse
Affiliation(s)
- Takuya Ogaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yasunori Matsui
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Haruki Okamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Naoyuki Nishida
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Sato
- Rigaku, 3-9-12 Matsubara-cho, Akishima, Tokyo, 196-8666, Japan
| | - Toshio Asada
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan
| | - Hiroyoshi Naito
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- Department of Physics and Electronics, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| | - Hiroshi Ikeda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
- The Research Institute for Molecular Electronic Devices (RIMED), Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
2
|
Lai J, Zhu R, Tan J, Yang Z, Ye S. Stacking Arrangement and Orientation of Aromatic Cations Tune Bandgap and Charge Transport of 2D Organic-Inorganic Hybrid Perovskites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303449. [PMID: 37495901 DOI: 10.1002/smll.202303449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Indexed: 07/28/2023]
Abstract
Chemical modifications on aromatic spacers of 2D perovskites have been demonstrated to be an effective strategy to simultaneously improve optoelectronic properties and stability. However, its underlying mechanism is poorly understood. By using 2D phenyl-based perovskites ([C6 H5 (CH2 )m NH3 ]2 PbI4 ) as models, the authors have revealed how the chemical nature of aromatic cations tunes the bandgap and charge transport of 2D perovskites by utilizing sum-frequency generation vibrational spectroscopy to determine the stacking arrangement and orientation of aromatic cations. It is found that the antiparallel slip-stack arrangement of phenyl rings between adjacent layers induces an indirect band gap, resulting in anomalous carrier dynamics. Incorporation of the CH2 moiety causes stacking rearrangement of the phenyl ring and thus promotes an indirect to direct bandgap transition. In direct-bandgap perovskites, higher carrier mobility correlates with a larger orientation angle of the phenyl ring. Further optimizing the orientation angle by introducing a para-substituted element in a phenyl ring, higher carrier mobility is obtained. This work highlights the importance of leveraging stacking arrangement and orientation of the aromatic cations to tune the photophysical properties, which opens up an avenue for advancing high-performance 2D perovskites optoelectronics via molecular engineering.
Collapse
Affiliation(s)
- Jing Lai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| | - Zhe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, China
| |
Collapse
|
3
|
Akai R, Oka K, Dekura S, Yoshimi K, Mori H, Nishikubo R, Saeki A, Tohnai N. Precise Control of the Molecular Arrangement of Organic Semiconductors for High Charge Carrier Mobility. J Phys Chem Lett 2023; 14:3461-3467. [PMID: 37010941 DOI: 10.1021/acs.jpclett.3c00334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Organic semiconductors are well-known to exhibit high charge carrier mobility based on their spread of the π-orbital. In particular, the π-orbital overlap between neighboring molecules significantly affects their charge carrier mobility. This study elucidated the direct effect of subtle differences in the π-orbital overlap on charge carrier mobility, by precisely controlling only molecular arrangements without any chemical modifications. We synthesized disulfonic acid composed of a [1]benzothieno[3,2-b][1]benzothiophene (BTBT) moiety, and prepared organic salts with four butylamine isomers. Regardless of the type of butylamine combined, electronic states of the constituent BTBT derivative were identical, and all BTBT arrangements were edge-to-face herringbone-type. However, depending on the difference of steric hindrance, center-to-center distances and dihedral angles between neighboring BTBT moieties slightly varied. Despite a similar arrangement, the photoconductivity of four organic salts differed by a factor of approximately two. Additionally, theoretical charge carrier mobilities from their crystal structures exhibited a strong correlation with their photoconductivity.
Collapse
Affiliation(s)
- Ryota Akai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kouki Oka
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shun Dekura
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Kazuyoshi Yoshimi
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hatsumi Mori
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Ryosuke Nishikubo
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry and Center for Future Innovation (CFi), Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Torubaev YV, Skabitsky IV, Anisimov AA, Ananyev IV. Long-range supramolecular synthon polymorphism: a case study of two new polymorphic cocrystals of Ph 2Te 2–1,4-C 6F 4I 2. CrystEngComm 2022. [DOI: 10.1039/d1ce01487k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Two new polymorphic forms of Ph2Te2–1,4-C6F4I2 cocrystals feature an unusual packing of Ph2Te2 molecules, which is typical for native Ph2Se2 but not Ph2Te2. This suggests the existence the yet unknown, Ph2Se2-like polymorph of Ph2Te2.
Collapse
Affiliation(s)
- Yury V. Torubaev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect, 31, 119991 Moscow, Russia
| | - Ivan V. Skabitsky
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect, 31, 119991 Moscow, Russia
| | - Aleksei A. Anisimov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119991, Moscow, Russia
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky prospect, 31, 119991 Moscow, Russia
| |
Collapse
|
5
|
Matsunaga A, Ogawa Y, Tamura S, Yamamoto K, Katagiri H. Molecular Structure‐Property Relationships of the Asymmetric Thienoacenes: Naphtho[2,3‐
b
]thieno[2,3‐
d
]thiophene, Anthra[2,3‐
b
]thieno[2,3‐
d
]thiophene, and their Thienyl Derivatives. ChemistrySelect 2021. [DOI: 10.1002/slct.202101423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Amane Matsunaga
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yuta Ogawa
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Shigeki Tamura
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Kazuhiro Yamamoto
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|