1
|
Boecker M, Lander S, Müller R, Gaus AL, Neumann C, Moser J, Micheel M, Turchanin A, Delius MV, Synatschke CV, Leopold K, Wächtler M, Weil T. Screening Cobalt-based Catalysts on Multicomponent CdSe@CdS Nanorods for Photocatalytic Hydrogen Evolution in Aqueous Media. ACS APPLIED NANO MATERIALS 2024; 7:14146-14153. [PMID: 38962509 PMCID: PMC11217917 DOI: 10.1021/acsanm.4c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/01/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024]
Abstract
We present CdSe@CdS nanorods coated with a redox-active polydopamine (PDA) layer functionalized with cobaloxime-derived photocatalysts for efficient solar-driven hydrogen evolution in aqueous environments. The PDA-coating provides reactive groups for the functionalization of the nanorods with different molecular catalysts, facilitates charge separation and transfer of electrons from the excited photosensitizer to the catalyst, and reduces photo-oxidation of the photosensitizer. X-ray photoelectron spectroscopy (XPS) confirms the successful functionalization of the nanorods with cobalt-based catalysts, whereas the catalyst loading per nanorod is quantified by total reflection X-ray fluorescence spectrometry (TXRF). A systematic comparison of different types of cobalt-based catalysts was carried out, and their respective performance was analyzed in terms of the number of nanorods and the amount of catalyst in each sample [turnover number, (TON)]. This study shows that the performance of these multicomponent photocatalysts depends strongly on the catalyst loading and less on the specific structure of the molecular catalyst. Lower catalyst loading is advantageous for increasing the TON because the catalysts compete for a limited number of charge carriers at the nanoparticle surface. Therefore, increasing the catalyst loading relative to the absolute amount of hydrogen produced does not lead to a steady increase in the photocatalytic activity. In our work, we provide insights into how the performance of a multicomponent photocatalytic system is determined by the intricate interplay of its components. We identify the stable attachment of the catalyst and the ratio between the catalyst and photosensitizer as critical parameters that must be fine-tuned for optimal performance.
Collapse
Affiliation(s)
- Marcel Boecker
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Sarah Lander
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Anna-Laurine Gaus
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
| | - Julia Moser
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Mathias Micheel
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller University Jena, Jena 07743, Germany
- Abbe Center
of Photonics (ACP), Jena 07745, Germany
| | - Max von Delius
- Institute
of Organic Chemistry I, University Ulm, Ulm 89081, Germany
| | - Christopher V. Synatschke
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, University Ulm, Ulm 89081, Germany
| | - Maria Wächtler
- Department
of Chemistry and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Tanja Weil
- Department
for Synthesis of Macromolecules, Max Planck
Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
2
|
Ye C, Zhang DS, Chen B, Tung CH, Wu LZ. Interfacial Charge Transfer Regulates Photoredox Catalysis. ACS CENTRAL SCIENCE 2024; 10:529-542. [PMID: 38559307 PMCID: PMC10979487 DOI: 10.1021/acscentsci.3c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 04/04/2024]
Abstract
Photoredox catalytic processes offer the potential for precise chemical reactions using light and materials. The central determinant is identified as interfacial charge transfer, which simultaneously engenders distinctive behavior in the overall reaction. An in-depth elucidation of the main mechanism and highlighting of the complexity of interfacial charge transfer can occur through both diffusive and direct transfer models, revealing its potential for sophisticated design in complex transformations. The fundamental photophysics uncover these comprehensive applications and offer a clue for future development. This research contributes to the growing body of knowledge on interfacial charge transfer in photoredox catalysis and sets the stage for further exploration of this fascinating area of research.
Collapse
Affiliation(s)
- Chen Ye
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - De-Shan Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Bin Chen
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Chen-Ho Tung
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Zhu Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials,
New Cornerstone Laboratory, Technical Institute
of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P. R. China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Isegawa M. Metal- and ligand-substitution-induced changes in the kinetics and thermodynamics of hydrogen activation and hydricity in a dinuclear metal complex. Dalton Trans 2024; 53:5966-5978. [PMID: 38462977 DOI: 10.1039/d4dt00361f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Catalytic function in organometallic complexes is achieved by carefully selecting their central metals and ligands. In this study, the effects of a metal and a ligand on the kinetics and thermodynamics of hydrogen activation, hydricity degree of the hydride complex, and susceptibility to electronic oxidation in bioinspired NiFe complexes, [NiIIX FeII(Cl)(CO)Y]+ ([NiFe(Cl)(CO)]+; X = N,N'-diethyl-3,7-diazanonane-1,9-dithiolato and Y = 1,2-bis(diphenylphosphino)ethane), were investigated. The density functional theory calculations revealed that the following order thermodynamically favored hydrogen activation: [NiFe(CO)]2+ > [NiRu(CO)]2+ > [NiFe(CNMe)]2+ ∼ [PdRu(CO)]2+ ∼ [PdFe(CO)]2+ ≫ [NiFe(NCS)]+. Moreover, the reverse order thermodynamically favored the hydricity degree.
Collapse
Affiliation(s)
- Miho Isegawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
4
|
Bagnall A, Eliasson N, Hansson S, Chavarot-Kerlidou M, Artero V, Tian H, Hammarström L. Ultrafast Electron Transfer from CuInS 2 Quantum Dots to a Molecular Catalyst for Hydrogen Production: Challenging Diffusion Limitations. ACS Catal 2024; 14:4186-4201. [PMID: 38510668 PMCID: PMC10949191 DOI: 10.1021/acscatal.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/06/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Systems integrating quantum dots with molecular catalysts are attracting ever more attention, primarily owing to their tunability and notable photocatalytic activity in the context of the hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR). CuInS2 (CIS) quantum dots (QDs) are effective photoreductants, having relatively high-energy conduction bands, but their electronic structure and defect states often lead to poor performance, prompting many researchers to employ them with a core-shell structure. Molecular cobalt HER catalysts, on the other hand, often suffer from poor stability. Here, we have combined CIS QDs, surface-passivated with l-cysteine and iodide from a water-based synthesis, with two tetraazamacrocyclic cobalt complexes to realize systems which demonstrate high turnover numbers for the HER (up to >8000 per catalyst), using ascorbate as the sacrificial electron donor at pH = 4.5. Photoluminescence intensity and lifetime quenching data indicated a large degree of binding of the catalysts to the QDs, even with only ca. 1 μM each of QDs and catalysts, linked to an entirely static quenching mechanism. The data was fitted with a Poissonian distribution of catalyst molecules over the QDs, from which the concentration of QDs could be evaluated. No important difference in either quenching or photocatalysis was observed between catalysts with and without the carboxylate as a potential anchoring group. Femtosecond transient absorption spectroscopy confirmed ultrafast interfacial electron transfer from the QDs and the formation of the singly reduced catalyst (CoII state) for both complexes, with an average electron transfer rate constant of ≈ (10 ps)-1. These favorable results confirm that the core tetraazamacrocyclic cobalt complex is remarkably stable under photocatalytic conditions and that CIS QDs without inorganic shell structures for passivation can act as effective photosensitizers, while their smaller size makes them suitable for application in the sensitization of, inter alia, mesoporous electrodes.
Collapse
Affiliation(s)
- Andrew
J. Bagnall
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Nora Eliasson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Sofie Hansson
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Murielle Chavarot-Kerlidou
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Vincent Artero
- Univ.
Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie
des Métaux, 17
rue des Martyrs, F-38054 Grenoble, Cedex, France
| | - Haining Tian
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Leif Hammarström
- Department
of Chemistry-Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| |
Collapse
|
5
|
Kumar K, Wächtler M. Unravelling Dynamics Involving Multiple Charge Carriers in Semiconductor Nanocrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091579. [PMID: 37177124 PMCID: PMC10181110 DOI: 10.3390/nano13091579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
The use of colloidal nanocrystals as part of artificial photosynthetic systems has recently gained significant attention, owing to their strong light absorption and highly reproducible, tunable electronic and optical properties. The complete photocatalytic conversion of water to its components is yet to be achieved in a practically suitable and commercially viable manner. To complete this challenging task, we are required to fully understand the mechanistic aspects of the underlying light-driven processes involving not just single charge carriers but also multiple charge carriers in detail. This review focuses on recent progress in understanding charge carrier dynamics in semiconductor nanocrystals and the influence of various parameters such as dimension, composition, and cocatalysts. Transient absorption spectroscopic studies involving single and multiple charge carriers, and the challenges associated with the need for accumulation of multiple charge carriers to drive the targeted chemical reactions, are discussed.
Collapse
Affiliation(s)
- Krishan Kumar
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Maria Wächtler
- Chemistry Department and State Research Center OPTIMAS, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Str. 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
6
|
Micheel M, Dong K, Amirav L, Wächtler M. Lateral charge migration in 1D semiconductor-metal hybrid photocatalytic systems. J Chem Phys 2023; 158:2882241. [PMID: 37093989 DOI: 10.1063/5.0144785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023] Open
Abstract
Colloidal nanorods based on CdS or CdSe, functionalized with metal particles, have proven to be efficient catalysts for light-driven hydrogen evolution. Seeded CdSe@CdS nanorods have shown increasing performance with increasing rod length. This observation was rationalized by the increasing lifetime of the separated charges, as a large distance between holes localized in the CdSe seed and electrons localized at the metal tip decreases their recombination rate. However, the impact of nanorod length on the electron-to-tip localization efficiency or pathway remained an open question. Therefore, we investigated the photo-induced electron transfer to the metal in a series of Ni-tipped CdSe@CdS nanorods with varying length. We find that the transfer processes occurring from the region close to the semiconductor-metal interface, the rod region, and the CdSe seed region depend in different ways on the rods' length. The rate of the fastest process from excitonic states generated directly at the interface is independent of the rod length, but the relative amplitude decreases with increasing rod length, as the weight of the interface region is decreasing. The transfer of electrons to the metal tip from excitons generated in the CdS rod region depends strongly on the length of the nanorods, which indicates an electron transport-limited process, i.e., electron diffusion toward the interface region, followed by fast interface crossing. The transfer originating from the CdSe excitonic states again shows no significant length dependence in its time constant, as it is probably limited by the rate of overcoming the shallow confinement in the CdSe seed.
Collapse
Affiliation(s)
- Mathias Micheel
- Department Functional Interfaces, Leibniz-Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Kaituo Dong
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Lilac Amirav
- Schulich Faculty of Chemistry, The Russell Berrie Nanotechnology Institute, The Nancy and Stephen Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Wächtler
- Department Functional Interfaces, Leibniz-Institute of Photonic Technology Jena, Albert-Einstein-Straße 9, 07745 Jena, Germany
- Chemistry Department and State Research Center Optimas, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Straße 52, 67663 Kaiserslautern, Germany
| |
Collapse
|
7
|
Benndorf S, Schleusener A, Müller R, Micheel M, Baruah R, Dellith J, Undisz A, Neumann C, Turchanin A, Leopold K, Weigand W, Wächtler M. Covalent Functionalization of CdSe Quantum Dot Films with Molecular [FeFe] Hydrogenase Mimics for Light-Driven Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18889-18897. [PMID: 37014708 PMCID: PMC10120591 DOI: 10.1021/acsami.3c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023]
Abstract
CdSe quantum dots (QDs) combined with [FeFe] hydrogenase mimics as molecular catalytic reaction centers based on earth-abundant elements have demonstrated promising activity for photocatalytic hydrogen generation. Direct linking of the [FeFe] hydrogenase mimics to the QD surface is expected to establish a close contact between the [FeFe] hydrogenase mimics and the light-harvesting QDs, supporting the transfer and accumulation of several electrons needed to drive hydrogen evolution. In this work, we report on the functionalization of QDs immobilized in a thin-film architecture on a substrate with [FeFe] hydrogenase mimics by covalent linking via carboxylate groups as the anchoring functionality. The functionalization was monitored via UV/vis, photoluminescence, IR, and X-ray photoelectron spectroscopy and quantified via micro-X-ray fluorescence spectrometry. The activity of the functionalized thin film was demonstrated, and turn-over numbers in the range of 360-580 (short linkers) and 130-160 (long linkers) were achieved. This work presents a proof-of-concept study, showing the potential of thin-film architectures of immobilized QDs as a platform for light-driven hydrogen evolution without the need for intricate surface modifications to ensure colloidal stability in aqueous environments.
Collapse
Affiliation(s)
- Stefan Benndorf
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Alexander Schleusener
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Riccarda Müller
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Mathias Micheel
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Raktim Baruah
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Jan Dellith
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Andreas Undisz
- Institute
of Materials Science and Engineering, Chemnitz
University of Technology, Erfenschlager Str. 73, 09125 Chemnitz, Germany
- Otto Schott
Institute of Materials Research, Friedrich
Schiller University Jena, 07743 Jena, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Abbe
Center of Photonics (ACP), Friedrich Schiller
University Jena, Albert-Einstein-Straße
6, 07745 Jena, Germany
| | - Kerstin Leopold
- Institute
of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee
11, 89081 Ulm, Germany
| | - Wolfgang Weigand
- Institute
of Inorganic and Analytical Chemistry, Friedrich
Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Maria Wächtler
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg
4, 07743 Jena, Germany
- Department:
Functional Interface, Leibniz Institute
of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
| |
Collapse
|
8
|
Yang W, Liu Y, Edvinsson T, Castner A, Wang S, He S, Ott S, Hammarström L, Lian T. Photoinduced Fano Resonances between Quantum Confined Nanocrystals and Adsorbed Molecular Catalysts. NANO LETTERS 2021; 21:5813-5818. [PMID: 34132552 DOI: 10.1021/acs.nanolett.1c01739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interaction of surface adsorbate vibration and intraband electron absorption in nanocrystals has been reported to affect the photophysical properties of both nanocrystals and surface adsorbates and may affect the performance of hybrid photocatalysts composed of semiconductor nanocrystals and molecular catalysts. Here, by combining ultrafast transient visible and IR spectroscopic measurements, we report the observation of Fano resonances between the intraband transition of the photogenerated electrons in CdS and CdSe nanocrystals and CO stretching vibrational modes of adsorbed molecular catalysts, [Fe2(cbdt)(CO)6] (FeFe; cbdt = 1-carboxyl-benzene-2,3-dithiolate), a molecular mimic for the active site of FeFe-hydrogenase. The occurrence of Fano resonances is independent of nanocrystal types (rods vs dots) or charge transfer character between the nanocrystal and FeFe, and is likely a general feature of nanocrystal and molecular catalyst hybrid systems. These results provide new insights into the fundamental interactions in these hybrid assemblies for artificial photosynthesis.
Collapse
Affiliation(s)
- Wenxing Yang
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Yawei Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tomas Edvinsson
- Department of Materials Science and Engineering, Uppsala University, 75103 Uppsala, Sweden
| | - Ashleigh Castner
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Shihuai Wang
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Sheng He
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Sascha Ott
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Leif Hammarström
- Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|