1
|
Eckert S, Otto L, Mascarenhas EJ, Pietzsch A, Mitzner R, Fondell M, Vaz da Cruz V, Föhlisch A. Electronic structure of aqueous nitrite and nitrate ions from resonant inelastic X-ray scattering. Phys Chem Chem Phys 2025. [PMID: 40304619 DOI: 10.1039/d5cp00748h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
In a comparative synchrotron X-ray absorption, non-resonant X-ray emission and resonant inelastic X-ray scattering investigation of aqueous nitrite and nitrate ions, we access both their unoccupied and occupied valence electronic structures. Complementary information is gained through the sensitivity to specific orbitals at the nitrogen and the oxygen 1s absorption edges. In particular, scattering through the pronounced 1s → π* resonances in combination with the scattering anisotropy and symmetry selection rules allow for an unambiguous assignment of molecular orbitals to their detected spectroscopic fingerprints. The nuclear dynamics in the 1s core-excited states are discussed in the context of the vibrational substructure of the detected spectral lines and signatures of core-excited state symmetry breaking are characterized through an analysis of the excitation energy detuning dependent spectra in combination with the involved potentials. A comparison between TD-DFT based spectrum simulations for isolated molecules and sampled structures from a QM/MM simulation reveals signatures of symmetry breaking induced by the solute-solvent interactions and a different response of spectral signatures of in- and out-of-plane orbitals to the solution environment.
Collapse
Affiliation(s)
- Sebastian Eckert
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Laurenz Otto
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Eric J Mascarenhas
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Vinícius Vaz da Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Alexander Föhlisch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
- Universität Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| |
Collapse
|
2
|
Nimmrich A, Govind N, Khalil M. Capturing Coupled Structural and Electronic Motions During Excited-State Intramolecular Proton Transfer via Computational Multiedge Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2024; 15:12652-12662. [PMID: 39688340 DOI: 10.1021/acs.jpclett.4c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Proton transfer processes form the foundation of many chemical processes. In excited-state intramolecular proton transfer (ESIPT) processes, ultrafast proton transfer is impulsively initiated through light. Here, we explore time-dependent coupled atomic and electronic motions during and following ESIPT through computational time-resolved resonant inelastic X-ray scattering (RIXS). Excited-state ab initio molecular dynamics simulations combined with time-dependent density functional theory calculations were performed for a model ESIPT system, 10-hydroxybenzo[h]quinoline, to obtain transient RIXS signatures. The RIXS spectra at both the nitrogen and oxygen K-edges were computed to resolve the electronic and atomic structural dynamics from both the proton donor and acceptor perspective. The results demonstrate that RIXS provides unprecedented details of the local electronic structure, the coupling between different core and valence excited electronic states, and the reorganization of the electronic structure coupled to the proton transfer process. We also develop a spectroscopic ruler correlating spectral shifts of a RIXS peak to the proton transfer distance during ESIPT. This work highlights the exciting potential of time-resolved RIXS experiments at newly commissioned soft X-ray free electron laser facilities for measuring coupled electronic and structural changes during ultrafast chemical processes.
Collapse
Affiliation(s)
- Amke Nimmrich
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
3
|
Freibert A, Mendive-Tapia D, Vendrell O, Huse N. A fully dynamical description of time-resolved resonant inelastic X-ray scattering of pyrazine. Phys Chem Chem Phys 2024; 26:22572-22581. [PMID: 39150720 DOI: 10.1039/d4cp00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Recent advancements in ultrashort and intense X-ray sources have enabled the utilisation of resonant inelastic X-ray scattering (RIXS) as a probing technique for monitoring photoinduced dynamics in molecular systems. To account for dynamic phenomena like non-adiabatic transitions across the relevant electronic state manifold, a time-dependent framework is crucial. Here, we introduce a fully time-dependent approach for calculating transient RIXS spectra using wavepacket dynamics simulations, alongside an explicit treatment of the X-ray probe pulse that surpasses Kramers-Heisenberg-Dirac constraints. Our analysis of pyrazine at the nitrogen K-edge underscores the importance of considering nuclear motion effects in all electronic states involved in the transient RIXS process. As a result, we propose a numerically exact approach to computationally support and predict cutting-edge time-resolved RIXS experiments.
Collapse
Affiliation(s)
- Antonia Freibert
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - David Mendive-Tapia
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Oriol Vendrell
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, Heidelberg, 69120, Germany.
| | - Nils Huse
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
| |
Collapse
|
4
|
Freibert A, Mendive-Tapia D, Huse N, Vendrell O. Time-Dependent Resonant Inelastic X-ray Scattering of Pyrazine at the Nitrogen K-Edge: A Quantum Dynamics Approach. J Chem Theory Comput 2024; 20:2167-2180. [PMID: 38315564 PMCID: PMC10938531 DOI: 10.1021/acs.jctc.3c01259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024]
Abstract
We calculate resonant inelastic X-ray scattering spectra of pyrazine at the nitrogen K-edge in the time domain including wavepacket dynamics in both the valence and core-excited state manifolds. Upon resonant excitation, we observe ultrafast non-adiabatic population transfer between core-excited states within the core-hole lifetime, leading to molecular symmetry distortions. Importantly, our time-domain approach inherently contains the ability to manipulate the dynamics of this process by detuning the excitation energy, which effectively shortens the scattering duration. We also explore the impact of pulsed incident X-ray radiation, which provides a foundation for state-of-the-art time-resolved experiments with coherent pulsed light sources.
Collapse
Affiliation(s)
- Antonia Freibert
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - David Mendive-Tapia
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Nils Huse
- Department
of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Oriol Vendrell
- Theoretical
Chemistry, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Savchenko V, Eckert S, Fondell M, Mitzner R, Vaz da Cruz V, Föhlisch A. Electronic structure, bonding and stability of fumarate, maleate, and succinate dianions from X-ray spectroscopy. Phys Chem Chem Phys 2024; 26:2304-2311. [PMID: 38165713 DOI: 10.1039/d3cp04348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The electronic structure of the fumarate, maleate, and succinate dianions in the context of their stability is determined in a joint experimental and computational study with X-ray absorption spectroscopy and resonant inelastic X-ray scattering at the O K-edge. The study reveals differences in the electronic states and molecular orbitals of the three molecules. In particular, maleate has a non-degenerate oxygen core-orbital with an energy difference of approximately 0.15 eV, visible in a two peak structure in XAS. Polarization-dependent RIXS provides information on the orientation of the occupied valence molecular orbitals with respect to the carboxylate group plane and shows a gradually increasing energy gap between the HOMO and excited π* LUMO from fumarate to maleate to succinate. We also demonstrate the energy excitation dependence of the RIXS spectra of maleate, with the total inelastic RIXS profile shifting towards higher energy loss as the detuning is increased from negative to positive values. Our findings show that maleate is less stable than fumarate and succinate due to the presence of electronic density on its HOMO orbital on the CC bond between carboxylate groups, which can lead to weaker bonding of maleate with molecules or ions.
Collapse
Affiliation(s)
- Viktoriia Savchenko
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Sebastian Eckert
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Vincius Vaz da Cruz
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
| | - Alexander Föhlisch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Institute for Methods and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany.
- Institut für Physik und Astronomie, Universität Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
6
|
Ochmann M, Vaz da Cruz V, Eckert S, Huse N, Föhlisch A. R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering. Chem Commun (Camb) 2022; 58:8834-8837. [PMID: 35848855 PMCID: PMC9350990 DOI: 10.1039/d2cc00053a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
The inherent stability of methylated formamides is traced to a stabilization of the deep-lying σ-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides.
Collapse
Affiliation(s)
- Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Vinícius Vaz da Cruz
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
| | - Sebastian Eckert
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
| | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Alexander Föhlisch
- Institute for Methods and Instrumentation in Synchrotron Radiation Research G-ISRR, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany.
- Institut für Physik and Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
7
|
Eckert S, Mascarenhas EJ, Mitzner R, Jay RM, Pietzsch A, Fondell M, Vaz da Cruz V, Föhlisch A. From the Free Ligand to the Transition Metal Complex: FeEDTA - Formation Seen at Ligand K-Edges. Inorg Chem 2022; 61:10321-10328. [PMID: 35764301 PMCID: PMC9277664 DOI: 10.1021/acs.inorgchem.2c00789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.
Collapse
Affiliation(s)
- Sebastian Eckert
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Eric J. Mascarenhas
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Rolf Mitzner
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Raphael M. Jay
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| | - Annette Pietzsch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Mattis Fondell
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Vinícius Vaz da Cruz
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Institute
for Methods and Instrumentation for Synchrotron Radiation Research, Helmholtz-Zentrum Berlin für Materialien und
Energie GmbH, 12489 Berlin, Germany
- Institut
für Physik und Astronomie, Universität
Potsdam, 14476 Potsdam, Germany
| |
Collapse
|
8
|
Vaz da Cruz V, Büchner R, Fondell M, Pietzsch A, Eckert S, Föhlisch A. Targeting Individual Tautomers in Equilibrium by Resonant Inelastic X-ray Scattering. J Phys Chem Lett 2022; 13:2459-2466. [PMID: 35266716 PMCID: PMC8935368 DOI: 10.1021/acs.jpclett.1c03453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Tautomerism is one of the most important forms of isomerism, owing to the facile interconversion between species and the large differences in chemical properties introduced by the proton transfer connecting the tautomers. Spectroscopic techniques are often used for the characterization of tautomers. In this context, separating the overlapping spectral response of coexisting tautomers is a long-standing challenge in chemistry. Here, we demonstrate that by using resonant inelastic X-ray scattering tuned to the core excited states at the site of proton exchange between tautomers one is able to experimentally disentangle the manifold of valence excited states of each tautomer in a mixture. The technique is applied to the prototypical keto-enol equilibrium of 3-hydroxypyridine in aqueous solution. We detect transitions from the occupied orbitals into the LUMO for each tautomer in solution, which report on intrinsic and hydrogen-bond-induced orbital polarization within the π and σ manifolds at the proton-transfer site.
Collapse
Affiliation(s)
- Vinícius Vaz da Cruz
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Robby Büchner
- Universität
Potsdam, Institut für Physik und Astronomie, 14476 Potsdam, Germany
| | - Mattis Fondell
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Annette Pietzsch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Sebastian Eckert
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| | - Alexander Föhlisch
- Helmholtz-Zentrum
Berlin für Materialien und Energie GmbH, Institute for Methods
and Instrumentation for Synchrotron Radiation Research, 12489 Berlin, Germany
| |
Collapse
|
9
|
Kim Y, Ma R, Lee J, Harich J, Nam D, Kim S, Kim M, Ochmann M, Eom I, Huse N, Lee JH, Kim TK. Ligand-Field Effects in a Ruthenium(II) Polypyridyl Complex Probed by Femtosecond X-ray Absorption Spectroscopy. J Phys Chem Lett 2021; 12:12165-12172. [PMID: 34914396 DOI: 10.1021/acs.jpclett.1c02400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ femtosecond X-ray absorption spectroscopy of [Ru(m-bpy)3]2+ (m-bpy = 6-methyl-2,2'-bipyridine) to elucidate the time evolution of the spin and charge density upon metal-to-ligand charge-transfer (MLCT) excitation. The core-level transitions at the Ru L3-edge reveal a very short MLCT lifetime of 0.9 ps and relaxation to the lowest triplet metal-centered state (3MC) which exhibits a lifetime of about 300 ps. Time-dependent density functional theory relates ligand methylation to a lower ligand field strength that stabilizes the 3MC state. A quarter of the 3MLCT population appears to be trapped which may be attributed to intramolecular vibrational relaxation or further electron transfer to the solvent. Our results demonstrate that small changes in the ligand field allow control of the photophysical properties. Moreover, this study underscores the high information content of femtosecond L-edge spectroscopy as a probe of valence charge density and spin-state in 4d transition metals.
Collapse
Affiliation(s)
- Yujin Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | | | - Junho Lee
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Jessica Harich
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | | | | | - Miguel Ochmann
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Nils Huse
- Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, 22761 Hamburg, Germany
| | | | - Tae Kyu Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|