1
|
Mai E, Malakar P, Batignani G, Martinati M, Ruhman S, Scopigno T. Orchestrating Nuclear Dynamics in a Permanganate Doped Crystal with Chirped Pump-Probe Spectroscopy. J Phys Chem Lett 2024; 15:6634-6646. [PMID: 38888442 DOI: 10.1021/acs.jpclett.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pump-probe spectroscopy is a powerful tool to investigate light-induced dynamical processes in molecules and solids. Targeting vibrational excitations occurring on the time scales of nuclear motions is challenging, as pulse durations shorter than a vibrational period are needed to initiate the dynamics, and complex experimental schemes are required to isolate weak signatures arising from wavepacket motion in different electronic states. Here, we demonstrate how introducing a temporal delay between the spectral components of femtosecond beams, namely a chirp resulting in the increase of their duration, can counterintuitively boost the desired signals by 2 orders of magnitude. Measuring the time-domain vibrational response of permanganate ions embedded in a KClO4 matrix, we identify an intricate dependence of the vibrational response on pulse chirps and probed wavelength that can be exploited to unveil weak signatures of the doping ions─otherwise dominated by the nonresonant matrix─or to obtain vibrational excitations pertaining only to the excited state, suppressing ground-state contributions.
Collapse
Affiliation(s)
- Emanuele Mai
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Partha Malakar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Giovanni Batignani
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma I-00161, Italy
| | - Miles Martinati
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
| | - Sanford Ruhman
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Tullio Scopigno
- Dipartimento di Fisica, Sapienza, Universitá di Roma, Roma I-00185, Italy
- Graphene Laboratories, Istituto Italiano di Tecnologia, Genova I-16163, Italy
| |
Collapse
|
2
|
Green D, Bressan G, Heisler IA, Meech SR, Jones GA. Vibrational coherences in half-broadband 2D electronic spectroscopy: Spectral filtering to identify excited state displacements. J Chem Phys 2024; 160:234104. [PMID: 38884412 DOI: 10.1063/5.0214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Vibrational coherences in ultrafast pump-probe (PP) and 2D electronic spectroscopy (2DES) provide insights into the excited state dynamics of molecules. Femtosecond coherence spectra and 2D beat maps yield information about displacements of excited state surfaces for key vibrational modes. Half-broadband 2DES uses a PP configuration with a white light continuum probe to extend the detection range and resolve vibrational coherences in the excited state absorption (ESA). However, the interpretation of these spectra is difficult as they are strongly dependent on the spectrum of the pump laser and the relative displacement of the excited states along the vibrational coordinates. We demonstrate the impact of these convoluting factors for a model based upon cresyl violet. A careful consideration of the position of the pump spectrum can be a powerful tool in resolving the ESA coherences to gain insights into excited state displacements. This paper also highlights the need for caution in considering the spectral window of the pulse when interpreting these spectra.
Collapse
Affiliation(s)
- Dale Green
- Physics, Faculty of Science, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ismael A Heisler
- Instituto de Física, Universidade Federal do Rio Grande do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
3
|
Bressan G, Green D, Jones GA, Heisler IA, Meech SR. Two-Dimensional Electronic Spectroscopy Resolves Relative Excited-State Displacements. J Phys Chem Lett 2024; 15:2876-2884. [PMID: 38447068 PMCID: PMC10945572 DOI: 10.1021/acs.jpclett.3c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
Knowledge of relative displacements between potential energy surfaces (PES) is critical in spectroscopy and photochemistry. Information on displacements is encoded in vibrational coherences. Here we apply ultrafast two-dimensional electronic spectroscopy in a pump-probe half-broadband (HB2DES) geometry to probe the ground- and excited-state potential landscapes of cresyl violet. 2D coherence maps reveal that while the coherence amplitude of the dominant 585 cm-1 Raman-active mode is mainly localized in the ground-state bleach and stimulated emission regions, a 338 cm-1 mode is enhanced in excited-state absorption. Modeling these data with a three-level displaced harmonic oscillator model using the hierarchical equation of motion-phase matching approach (HEOM-PMA) shows that the S1 ← S0 PES displacement is greater along the 585 cm-1 coordinate than the 338 cm-1 coordinate, while Sn ← S1 displacements are similar along both coordinates. HB2DES is thus a powerful tool for exploiting nuclear wavepackets to extract quantitative multidimensional, vibrational coordinate information across multiple PESs.
Collapse
Affiliation(s)
- Giovanni Bressan
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Dale Green
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Garth A. Jones
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| | - Ismael A. Heisler
- Instituto
de Fisica, Universidade Federal do Rio Grande
do Sul, 91509-900 Porto Alegre, RS, Brazil
| | - Stephen R. Meech
- School
of Chemistry, Norwich Research Park, University
of East Anglia, Norwich NR4 7TJ, United
Kingdom
| |
Collapse
|
4
|
Solaris J, Krueger TD, Chen C, Fang C. Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red. Molecules 2023; 28:3506. [PMID: 37110741 PMCID: PMC10144053 DOI: 10.3390/molecules28083506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of -COH rocking and -C=C, -C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck-Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique "W"-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump-probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics.
Collapse
|
5
|
Bailey-Darland S, Krueger TD, Fang C. Ultrafast Spectroscopies of Nitrophenols and Nitrophenolates in Solution: From Electronic Dynamics and Vibrational Structures to Photochemical and Environmental Implications. Molecules 2023; 28:601. [PMID: 36677656 PMCID: PMC9866910 DOI: 10.3390/molecules28020601] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Nitrophenols are a group of small organic molecules with significant environmental implications from the atmosphere to waterways. In this work, we investigate a series of nitrophenols and nitrophenolates, with the contrasting ortho-, meta-, and para-substituted nitro group to the phenolic hydroxy or phenolate oxygen site (2/3/4NP or NP-), implementing a suite of steady-state and time-resolved spectroscopic techniques that include UV/Visible spectroscopy, femtosecond transient absorption (fs-TA) spectroscopy with probe-dependent and global analysis, and femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations. The excitation-dependent (400 and 267 nm) electronic dynamics in water and methanol, for six protonated or deprotonated nitrophenol molecules (three regioisomers in each set), enable a systematic investigation of the excited-state dynamics of these functional "nanomachines" that can undergo nitro-group twisting (as a rotor), excited-state intramolecular or intermolecular proton transfer (donor-acceptor, ESIPT, or ESPT), solvation, and cooling (chromophore) events on molecular timescales. In particular, the meta-substituted compound 3NP or 3NP- exhibits the strongest charge-transfer character with FSRS signatures (e.g., C-N peak frequency), and thus, does not favor nitroaromatic twist in the excited state, while the ortho-substituted compound 2NP can undergo ESIPT in water and likely generate nitrous acid (HONO) after 267 nm excitation. The delineated mechanistic insights into the nitro-substituent-location-, protonation-, solvent-, and excitation-wavelength-dependent effects on nitrophenols, in conjunction with the ultraviolet-light-induced degradation of 2NP in water, substantiates an appealing discovery loop to characterize and engineer functional molecules for environmental applications.
Collapse
|
6
|
Absolute excited state molecular geometries revealed by resonance Raman signals. Nat Commun 2022; 13:7770. [PMID: 36522323 PMCID: PMC9755279 DOI: 10.1038/s41467-022-35099-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.
Collapse
|
7
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
8
|
Dhamija S, Bhutani G, Jayachandran A, De AK. A Revisit on Impulsive Stimulated Raman Spectroscopy: Importance of Spectral Dispersion of Chirped Broadband Probe. J Phys Chem A 2022; 126:1019-1032. [PMID: 35142494 DOI: 10.1021/acs.jpca.1c10566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl4, CHCl3, and CH2Cl2) are used. Observation of periodic intensity modulation along detection wavelengths for particular modes is explained using a simple electric field interaction picture. This method is extended to diatomic molecule (iodine) and polyatomic molecules (Nile blue and methylene blue) to assign vibrational frequencies in ground/excited electronic state that are supported by density functional theory calculations. A comparison between frequency-domain and time-domain counterparts, i.e., stimulated Raman scattering and impulsive stimulated Raman scattering using degenerate pump-probe pairs is presented, and most importantly, it is shown how impulsive stimulated Raman scattering using chirped broadband probe retains unique advantages offered by both.
Collapse
Affiliation(s)
- Shaina Dhamija
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Garima Bhutani
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Ajay Jayachandran
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|