1
|
Holman AP, Dou T, Matveyenka M, Zhaliazka K, Patel A, Maalouf A, Elsaigh R, Kurouski D. The role of phospholipid saturation and composition in α-synuclein aggregation and toxicity: A dual in vitro and in vivo approach. Protein Sci 2025; 34:e70121. [PMID: 40247826 PMCID: PMC12006753 DOI: 10.1002/pro.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Parkinson's disease is characterized by a progressive accumulation of α-synuclein (α-syn) aggregates in Lewy bodies, extracellular deposits found in the midbrain, hypothalamus, and thalamus. The rate of α-syn aggregation, as well as the secondary structure of α-syn oligomers and fibrils, can be uniquely altered by lipids. However, the role of saturation of fatty acids (FAs) in such lipids in the aggregation properties of α-syn remains unclear. In this study, we investigated the effect of saturation of FAs in phosphatidylcholine (PC) and cardiolipin (CL), as well as a mixture of these phospholipids on the rate of α-syn aggregation. We found that although saturation plays very little if any role in the rate of protein aggregation and morphology of α-syn aggregates, it determined the secondary structure of α-syn oligomers and fibrils. Furthermore, we found that aggregates formed in the presence of both saturated and unsaturated PC and CL, as well as mixtures of these phospholipids, exert significantly higher cell toxicity compared to the protein aggregates formed in the lipid-free environment. To extend these findings, we conducted in vivo studies using C. elegans, where we assessed the effect of lipid-modified α-syn aggregates on organismal survival and neurotoxicity. Our results suggest that the saturation of FAs in phospholipids present in the plasma and mitochondrial membranes can be a key determinant of the secondary structure and, consequently, the toxicity of α-syn oligomers and fibrils. These findings provide new insights into the role of lipids in Parkinson's disease pathogenesis and highlight potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aidan P. Holman
- Interdisciplinary Faculty of ToxicologyTexas A&M UniversityCollege StationTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Tianyi Dou
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Mikhail Matveyenka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Kiryl Zhaliazka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Anjni Patel
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Avery Maalouf
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Ragd Elsaigh
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Interdisciplinary Faculty of ToxicologyTexas A&M UniversityCollege StationTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
2
|
Wang S, Zhang W, Fu P, Zhong Y, Piatkevich KD, Zhang D, Lee HJ. Structural diversity of Alzheimer-related protein aggregations revealed using photothermal ratio-metric micro-spectroscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:6768-6782. [PMID: 39679398 PMCID: PMC11640567 DOI: 10.1364/boe.537461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 12/17/2024]
Abstract
The crucial link between pathological protein aggregations and lipids in Alzheimer's disease pathogenesis is increasingly recognized, yet its spatial dynamics remain challenging for labeling-based microscopy. Here, we demonstrate photothermal ratio-metric infrared spectro-microscopy (PRISM) to investigate the in situ structural and molecular compositions of pathological features in brain tissues at submicron resolution. By identifying the vibrational spectroscopic signatures of protein secondary structures and lipids, PRISM tracks the structural dynamics of pathological proteins, including amyloid and hyperphosphorylated Tau (pTau). Amyloid-associated lipid features in major brain regions were observed, notably the enrichment of lipid-dissociated plaques in the hippocampus. Spectroscopic profiling of pTau revealed significant heterogeneity in phosphorylation levels and a distinct lipid-pTau relationship that contrasts with the anticipated lipid-plaque correlation. Beyond in vitro studies, our findings provide direct visualization evidence of aggregate-lipid interactions across the brain, offering new insights into mechanistic and therapeutic research of neurodegenerative diseases.
Collapse
Affiliation(s)
- Siming Wang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Wenhao Zhang
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Pengcheng Fu
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310024, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310024, China
| | - Kiryl D Piatkevich
- School of Life Sciences, Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Delong Zhang
- Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, and School of Physics, Zhejiang University, Hangzhou 310027, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou 310027, China
- Innovative and Entrepreneur Team of Zhejiang for Year 2020 Biomarker Driven Basic and Translational Research on Major Brain Diseases, Zhejiang University, Hangzhou 310027, China
| | - Hyeon Jeong Lee
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration of Zhejiang University, Hangzhou 310027, China
- College of Biomedical Engineering & Instrument Science, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Meng H, Elliott A, Mansfield J, Bailey M, Frogley M, Cinque G, Moger J, Stone N, Tamagnini F, Palombo F. Identification of tauopathy-associated lipid signatures in Alzheimer's disease mouse brain using label-free chemical imaging. Commun Biol 2024; 7:1341. [PMID: 39420210 PMCID: PMC11487145 DOI: 10.1038/s42003-024-07034-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
There is cumulative evidence that lipid metabolism plays a key role in the pathogenesis of various neurodegenerative disorders including Alzheimer's disease (AD). Visualising lipid content in a non-destructive label-free manner can aid in elucidating the AD phenotypes towards a better understanding of the disease. In this study, we combined multiple optical molecular-specific methods, Fourier transform infrared (FTIR) spectroscopic imaging, synchrotron radiation-infrared (SR-IR) microscopy, Raman and stimulated Raman scattering (SRS) microscopy, and optical-photothermal infrared (O-PTIR) microscopy with multivariate data analysis, to investigate the biochemistry of brain hippocampus in situ using a mouse model of tauopathy (rTg4510). We observed a significant difference in the morphology and lipid content between transgenic (TG) and wild type (WT) samples. Immunohistochemical staining revealed some degree of microglia co-localisation with elevated lipids in the brain. These results provide new evidence of tauopathy-related dysfunction in a preclinical study at a subcellular level.
Collapse
Affiliation(s)
- Hao Meng
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Alicia Elliott
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Jessica Mansfield
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Michelle Bailey
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Mark Frogley
- Diamond Light Source, MIRIAM beamline B22, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Gianfelice Cinque
- Diamond Light Source, MIRIAM beamline B22, Harwell Science & Innovation Campus, Didcot, OX11 0DE, UK
| | - Julian Moger
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Nick Stone
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK
| | - Francesco Tamagnini
- School of Pharmacy, University of Reading, Reading, RG6 6UB, UK
- Centro Studi Biomedici, Università degli Studi della Repubblica di San Marino, Salita alla Rocca, 44 - 47890, San Marino Città, Republic of San Marino
| | - Francesca Palombo
- Department of Physics and Astronomy, University of Exeter, Exeter, EX4 4QL, UK.
| |
Collapse
|
4
|
Ali A, Matveyenka M, Rodriguez A, Kurouski D. Under Heparin-Free Conditions Unsaturated Phospholipids Inhibit the Aggregation of 1N4R and 2N4R Tau. J Phys Chem Lett 2024; 15:8577-8583. [PMID: 39140785 PMCID: PMC11345945 DOI: 10.1021/acs.jpclett.4c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
A progressive aggregation of Tau proteins in the brain is linked to both Alzheimer's disease (AD) and various Tauopathies. This pathological process can be enhanced by several substances, including heparin. However, very little if anything is known about molecules that can inhibit the aggregation of Tau isoforms. In this study, we examined the effect of phosphatidylserines (PSs) with various lengths and saturations of fatty acids (FAs) on the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N-terminal inserts that enhance binding of Tau to tubulin. We found that PS with unsaturated and short-length FAs inhibited Tau aggregation and drastically lowered the toxicity of Tau oligomers that were formed in the presence of such phospholipids. Such an effect was not observed for PS with fully saturated long-chain FAs. These results suggest that a short-chain irreversible disbalance between saturated and unsaturated lipids in the brain could be the trigger of Tau aggregation.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
do Nascimento Amorim MDS, Silva França ÁR, Santos-Oliveira R, Rodrigues Sanches J, Marinho Melo T, Araújo Serra Pinto B, Barbosa LRS, Alencar LMR. Atomic Force Microscopy Applied to the Study of Tauopathies. ACS Chem Neurosci 2024; 15:699-715. [PMID: 38305187 DOI: 10.1021/acschemneuro.3c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Atomic force microscopy (AFM) is a scanning probe microscopy technique which has a physical principle, the measurement of interatomic forces between a very thin tip and the surface of a sample, allowing the obtaining of quantitative data at the nanoscale, contributing to the surface study and mechanical characterization. Due to its great versatility, AFM has been used to investigate the structural and nanomechanical properties of several inorganic and biological materials, including neurons affected by tauopathies. Tauopathies are neurodegenerative diseases featured by aggregation of phosphorylated tau protein inside neurons, leading to functional loss and progressive neurotoxicity. In the broad universe of neurodegenerative diseases, tauopathies comprise the most prevalent, with Alzheimer's disease as its main representative. This review highlights the use of AFM as a suitable research technique for the study of cellular damages in tauopathies, even in early stages, allowing elucidation of pathogenic mechanisms of these diseases.
Collapse
Affiliation(s)
- Maria do Socorro do Nascimento Amorim
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Álefe Roger Silva França
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| | - Ralph Santos-Oliveira
- Nuclear Engineering Institute, Brazilian Nuclear Energy Commission, Rio de Janeiro 21941906, Brazil
- Laboratory of Nanoradiopharmacy, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| | - Jonas Rodrigues Sanches
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Thamys Marinho Melo
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Bruno Araújo Serra Pinto
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, Campus Bacanga, São Luís, 65080-805, Maranhão, Brazil
| | - Leandro R S Barbosa
- Department of General Physics, Institute of Physics, University of São Paulo, São Paulo 05508-000, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Department of Physics, Federal University of Maranhão, Campus Bacanga, São Luís 65080-805, Maranhão, Brazil
| |
Collapse
|
6
|
Suresh K, Dahal E, Badano A. Synthetic β-sheets mimicking fibrillar and oligomeric structures for evaluation of spectral X-ray scattering technique for biomarker quantification. Cell Biosci 2024; 14:26. [PMID: 38374092 PMCID: PMC10877803 DOI: 10.1186/s13578-024-01208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Archetypical cross-β spines sharpen the boundary between functional and pathological proteins including β-amyloid, tau, α-synuclein and transthyretin are linked to many debilitating human neurodegenerative and non-neurodegenerative amyloidoses. An increased focus on development of pathogenic β-sheet specific fluid and imaging structural biomarkers and conformation-specific monoclonal antibodies in targeted therapies has been recently observed. Identification and quantification of pathogenic oligomers remain challenging for existing neuroimaging modalities. RESULTS We propose two artificial β-sheets which can mimic the nanoscopic structural characteristics of pathogenic oligomers and fibrils for evaluating the performance of a label free, X-ray based biomarker detection and quantification technique. Highly similar structure with elliptical cross-section and parallel cross-β motif is observed among recombinant α-synuclein fibril, Aβ-42 fibril and artificial β-sheet fibrils. We then use these β-sheet models to assess the performance of spectral small angle X-ray scattering (sSAXS) technique for detecting β-sheet structures. sSAXS showed quantitatively accurate detection of antiparallel, cross-β artificial oligomers from a tissue mimicking environment and significant distinction between different oligomer packing densities such as diffuse and dense packings. CONCLUSION The proposed synthetic β-sheet models mimicked the nanoscopic structural characteristics of β-sheets of fibrillar and oligomeric states of Aβ and α-synuclein based on the ATR-FTIR and SAXS data. The tunability of β-sheet proportions and shapes of structural motifs, and the low-cost of these β-sheet models can become useful test materials for evaluating β-sheet or amyloid specific biomarkers in a wide range of neurological diseases. By using the proposed synthetic β-sheet models, our study indicates that the sSAXS has potential to evaluate different stages of β-sheet-enriched structures including oligomers of pathogenic proteins.
Collapse
Affiliation(s)
- Karthika Suresh
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Eshan Dahal
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Aldo Badano
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, 20993, USA
| |
Collapse
|
7
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain-RNA liquid droplets to promote heterotypic amyloid fibrils. Commun Biol 2023; 6:1227. [PMID: 38052886 PMCID: PMC10697960 DOI: 10.1038/s42003-023-05608-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear if αS can modulate TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale AFM-IR spectroscopy, and biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets. The aggregates of αS on these clusters emulsify the droplets by nucleating the formation of heterotypic TDP-43PrLD amyloid fibrils, structures of which are distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS to act as a Pickering agent while interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
8
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain - RNA liquid droplets to promote heterotypic amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554502. [PMID: 37662377 PMCID: PMC10473755 DOI: 10.1101/2023.08.23.554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear whether and how αS modulates TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale spatially-resolved spectroscopy, and other biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets and emulsifying them. The 'hardening' of the droplets that follow by αS aggregates on the periphery, nucleates the formation of heterotypic TDP-43PrLD amyloid fibrils with structures distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS as a Pickering agent in interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| |
Collapse
|
9
|
Banerjee S, Naik T, Ghosh A. Intermediate Antiparallel Fibrils in Aβ40 Dutch Mutant Aggregation: Insights from Nanoscale Infrared Spectroscopy. J Phys Chem B 2023; 127:5799-5807. [PMID: 37363988 PMCID: PMC10691422 DOI: 10.1021/acs.jpcb.3c01869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Cerebral amyloid angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease (AD) cases. Familial mutations in the amyloid β peptide are correlated to higher risks of CAA and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild-type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with atomic force microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly antiparallel in character, which develop parallel β sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
10
|
Zhao J, Jiang L, Matlock A, Xu Y, Zhu J, Zhu H, Tian L, Wolozin B, Cheng JX. Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:147. [PMID: 37322011 PMCID: PMC10272128 DOI: 10.1038/s41377-023-01191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/17/2023]
Abstract
Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the β-sheet for tau fibril structure is achieved.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| | - Lulu Jiang
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Alex Matlock
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Yihong Xu
- Department of Physics, Boston University, Boston, MA, 02215, USA
| | - Jiabei Zhu
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
| | - Hongbo Zhu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 130033, Changchun, China
| | - Lei Tian
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ji-Xin Cheng
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, 02215, USA.
- Department of Physics, Boston University, Boston, MA, 02215, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Photonics Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
11
|
Zhaliazka K, Matveyenka M, Kurouski D. Lipids uniquely alter the secondary structure and toxicity of amyloid beta 1-42 aggregates. FEBS J 2023; 290:3203-3220. [PMID: 36705524 PMCID: PMC10389563 DOI: 10.1111/febs.16738] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 01/25/2023] [Indexed: 01/28/2023]
Abstract
Abrupt aggregation of amyloid β1-42 (Aβ) peptide is a hallmark of Alzheimer's disease (AD), a severe pathology that affects more than 44 million people worldwide. A growing body of evidence suggests that lipids can uniquely alter rates of Aβ1-42 aggregation. However, it remains unclear whether lipids only alter rates of protein aggregation or also uniquely modify the secondary structure and toxicity of Aβ1-42 oligomers and fibrils. In this study, we investigated the effect of phosphatidylcholine (PC), cardiolipin (CL), and cholesterol (Chol) on Aβ1-42 aggregation. We found that PC, CL and Chol strongly accelerated the rate of fibril formation compared to the rate of Aβ1-42 aggregation in the lipid-free environment. Furthermore, anionic CL enabled the strongest acceleration of Aβ1-42 aggregation compared to zwitterionic PC and uncharged Chol. We also found that PC, CL and Chol uniquely altered the secondary structure of early-, middle- and late-stage Aβ1-42 aggregates. Specifically, CL and Chol drastically increased the amount of parallel β-sheet in Aβ1-42 oligomers and fibrils grown in the presence of these lipids. This caused a significant increase in the toxicity of Aβ : CL and Aβ : Chol compared to the toxicity of Aβ : PC and Aβ1-42 aggregates formed in the lipid-free environment. These results demonstrate that toxicity of Aβ aggregates correlates with the amount of their β-sheet content, which, in turn, is determined by the chemical structure of lipids present at the stage of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Kiryl Zhaliazka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843, United States
| |
Collapse
|
12
|
Li P, Chen J, Wang X, Su Z, Gao M, Huang Y. Liquid - liquid phase separation of tau: Driving forces, regulation, and biological implications. Neurobiol Dis 2023; 183:106167. [PMID: 37230179 DOI: 10.1016/j.nbd.2023.106167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023] Open
Abstract
The past 15 years have witnessed an explosion in the studies of biomolecular condensates that are implicated in numerous biological processes and play vital roles in human health and diseases. Recent findings demonstrate that the microtubule-associated protein tau forms liquid condensates through liquid-liquid phase separation (LLPS) in in vitro experiments using purified recombinant proteins and cell-based experiments. Although in vivo studies are lacking, liquid condensates have emerged as an important assembly state of physiological and pathological tau and LLPS can regulate the function of microtubules, mediate stress granule formation, and accelerate tau amyloid aggregation. In this review, we summarize recent advances in tau LLPS, aiming to unveiling the delicate interactions driving tau LLPS. We further discuss the association of tau LLPS with physiology and disease in the context of the sophisticated regulation of tau LLPS. Deciphering the mechanisms underlying tau LLPS and the liquid-to-solid transition enables rational design of molecules that inhibit or delay the formation of tau solid species, thus providing novel targeted therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Ping Li
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Jingxin Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Xi Wang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Zhengding Su
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China; Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China; Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
13
|
Banerjee S, Naik T, Ghosh A. Intermediate antiparallel fibrils in Aβ40 Dutch mutant aggregation: nanoscale insights from AFM-IR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.21.533667. [PMID: 36993390 PMCID: PMC10055286 DOI: 10.1101/2023.03.21.533667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cerebral Amyloid Angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer's disease cases. Familial mutations in the amyloid β peptide is correlated to higher risks of CAA, and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with Atomic Force Microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β-sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly anti parallel in character, which develop parallel β-sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.
Collapse
|
14
|
Banerjee S, Baghel D, Pacheco de Oliveira A, Ghosh A. β-Carotene, a Potent Amyloid Aggregation Inhibitor, Promotes Disordered Aβ Fibrillar Structure. Int J Mol Sci 2023; 24:ijms24065175. [PMID: 36982248 PMCID: PMC10049578 DOI: 10.3390/ijms24065175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
The aggregation of amyloid beta (Aβ) into fibrillar aggregates is a key feature of Alzheimer’s disease (AD) pathology. β-carotene and related compounds have been shown to associate with amyloid aggregates and have direct impact on the formation of amyloid fibrils. However, the precise effect of β-carotene on the structure of amyloid aggregates is not known, which poses a limitation towards developing it as a potential AD therapeutic. In this report, we use nanoscale AFM-IR spectroscopy to probe the structure of Aβ oligomers and fibrils at the single aggregate level and demonstrate that the main effect of β-carotene towards modulating Aβ aggregation is not to inhibit fibril formation but to alter the secondary structure of the fibrils and promote fibrils that lack the characteristic ordered beta structure.
Collapse
|
15
|
Ge WY, Deng X, Shi WP, Lin WJ, Chen LL, Liang H, Wang XT, Zhang TD, Zhao FZ, Guo WH, Yin DC. Amyloid Protein Cross-Seeding Provides a New Perspective on Multiple Diseases In Vivo. Biomacromolecules 2023; 24:1-18. [PMID: 36507729 DOI: 10.1021/acs.biomac.2c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.
Collapse
Affiliation(s)
- Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Deng
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Pu Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wen-Juan Lin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huan Liang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ting Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tuo-Di Zhang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Feng-Zhu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.,Non-commissioned Officer School, Army Medical University, Shijiazhuang 050081, China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
16
|
Banerjee S, Baghel D, Iqbal MHU, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Parallel to Antiparallel β-Sheet Transformation of Aβ Fibrils. J Phys Chem Lett 2022; 13:10522-10526. [PMID: 36342244 PMCID: PMC10079140 DOI: 10.1021/acs.jpclett.2c02998] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spontaneous aggregation of amyloid beta (Aβ) proteins leading to the formation of oligomers and eventually into fibrils has been identified as a key pathological signature of Alzheimer's disease. The structure of late-stage aggregates have been studied in depth by conventional structural biology techniques, including nuclear magnetic resonance, X-ray crystallography, and infrared spectroscopy; however, the structure of early-stage aggregates is less known due to their transient nature. As a result, the structural evolution of amyloid aggregates from early oligomers to mature fibrils is still not fully understood. Here, we have applied atomic force microscopy-infrared nanospectroscopy to investigate the aggregation of Aβ 16-22, which spans the amyloidogenic core of the Aβ peptide. Our results demonstrate that Aβ 16-22 involves a structural transition from oligomers with parallel β-sheets to antiparallel fibrils through disordered and possibly helical intermediate fibril structures, contrary to the known aggregation pathway of full-length Aβ.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487
| | - Md Hasan ul Iqbal
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, AL 35487
| |
Collapse
|
17
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
18
|
Banerjee S, Holcombe B, Ringold S, Foes A, Naik T, Baghel D, Ghosh A. Nanoscale Infrared Spectroscopy Identifies Structural Heterogeneity in Individual Amyloid Fibrils and Prefibrillar Aggregates. J Phys Chem B 2022; 126:5832-5841. [PMID: 35914320 DOI: 10.1021/acs.jpcb.2c04797] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Amyloid plaques are one of the central manifestations of Alzheimer's disease pathology. Aggregation of the amyloid beta (Aβ) protein from amorphous oligomeric species to mature fibrils has been extensively studied. However, structural heterogeneities in prefibrillar species, and how that affects the structure of later-stage aggregates are not yet well understood. The integration of infrared spectroscopy with atomic force microscopy (AFM-IR) allows for identifying the signatures of individual nanoscale aggregates by spatially resolving spectra. We use AFM-IR to demonstrate that amyloid oligomers exhibit significant structural variations as evidenced in their infrared spectra. This heterogeneity is transmitted to and retained in protofibrils and fibrils. We show that amyloid fibrils do not always conform to their putative ordered structure and structurally different domains exist in the same fibril. We further demonstrate that these structural heterogeneities manifest themselves as a lack of β sheet structure in amyloid plaques in Alzheimer's tissue using infrared imaging.
Collapse
Affiliation(s)
- Siddhartha Banerjee
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Brooke Holcombe
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Sydney Ringold
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Abigail Foes
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Tanmayee Naik
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Divya Baghel
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, The University of Alabama, 1007E Shelby Hall, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|