1
|
Sarkar S, Mondal J. How Salt and Temperature Drive Reentrant Condensation of Aβ40. Biochemistry 2024; 63:3030-3044. [PMID: 39466031 DOI: 10.1021/acs.biochem.4c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Within the framework of liquid-liquid phase separation (LLPS), biomolecular condensation orchestrates vital cellular processes, and its dysregulation is implicated in severe pathological conditions. Recent studies highlight the role of intrinsically disordered proteins (IDPs) in LLPS, yet the influence of microenvironmental factors has remained a puzzling factor. Here, via computational simulation of the impact of solution conditions on LLPS behavior of neurologically pathogenic IDP Aβ40, we chanced upon a salt-driven reentrant condensation phenomenon, wherein Aβ40 aggregation increases with low salt concentrations (25-50 mM), followed by a decline with further salt increments. An exploration of the thermodynamic and kinetic signatures of reentrant condensation unveils a nuanced interplay between protein electrostatics and ionic strength as potential drivers. Notably, the charged residues of the N-terminus exhibit a nonmonotonic response to salt screening, intricately linked to the recurrence of reentrant behavior in hydrophobic core-induced condensation. Intriguingly, our findings also unveil the reappearance of similar reentrant condensation phenomena under varying temperature conditions. Collectively, our study illuminates the profoundly context-dependent nature of Aβ40s liquid-liquid phase separation behavior, extending beyond its intrinsic molecular framework, where microenvironmental cues wield significant influence over its aberrant functionality.
Collapse
Affiliation(s)
- Susmita Sarkar
- Tata Institute of Fundamental Research Hyderabad 36/P Gopanapally village, Hyderabad, Telangana India 500046
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad 36/P Gopanapally village, Hyderabad, Telangana India 500046
| |
Collapse
|
2
|
Rizvi A, Favetta B, Jaber N, Lee YK, Jiang J, Idris NS, Schuster BS, Dai W, Patterson JP. Revealing nanoscale structure and interfaces of protein and polymer condensates via cryo-electron microscopy. NANOSCALE 2024; 16:16706-16717. [PMID: 39171763 PMCID: PMC11392623 DOI: 10.1039/d4nr01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Liquid-liquid phase separation (LLPS) is a ubiquitous demixing phenomenon observed in various molecular solutions, including in polymer and protein solutions. Demixing of solutions results in condensed, phase separated droplets which exhibit a range of liquid-like properties driven by transient intermolecular interactions. Understanding the organization within these condensates is crucial for deciphering their material properties and functions. This study explores the distinct nanoscale networks and interfaces in the condensate samples using a modified cryo-electron microscopy (cryo-EM) method. The method involves initiating condensate formation on electron microscopy grids to limit droplet growth as large droplet sizes are not ideal for cryo-EM imaging. The versatility of this method is demonstrated by imaging three different classes of condensates. We further investigate the condensate structures using cryo-electron tomography which provides 3D reconstructions, uncovering porous internal structures, unique core-shell morphologies, and inhomogeneities within the nanoscale organization of protein condensates. Comparison with dry-state transmission electron microscopy emphasizes the importance of preserving the hydrated structure of condensates for accurate structural analysis. We correlate the internal structure of protein condensates with their amino acid sequences and material properties by performing viscosity measurements that support that more viscous condensates exhibit denser internal assemblies. Our findings contribute to a comprehensive understanding of nanoscale condensate structure and its material properties. Our approach here provides a versatile tool for exploring various phase-separated systems and their nanoscale structures for future studies.
Collapse
Affiliation(s)
- Aoon Rizvi
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Bruna Favetta
- Department of Biomedical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nora Jaber
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yun-Kyung Lee
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jennifer Jiang
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Nehal S Idris
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
| | - Benjamin S Schuster
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wei Dai
- Department of Cell Biology and Neuroscience & Institute for Quantitative Biomedicine, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph P Patterson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697-2025, USA.
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, CA 92697-2025, USA
| |
Collapse
|
3
|
Pradhan S, Campanile M, Sharma S, Oliva R, Patra S. Mechanistic Insights into the c-MYC G-Quadruplex and Berberine Binding inside an Aqueous Two-Phase System Mimicking Biomolecular Condensates. J Phys Chem Lett 2024; 15:8706-8714. [PMID: 39159468 DOI: 10.1021/acs.jpclett.4c01806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We investigated the binding between the c-MYC G-quadruplex (GQ) and berberine chloride (BCl) in an aqueous two-phase system (ATPS) with 12.3 wt % polyethylene glycol and 5.6 wt % dextran, mimicking the highly crowded intracellular biomolecular condensates formed via liquid-liquid phase separation. We found that in the ATPS, complex formation is significantly altered, leading to an increase in affinity and a change in the stoichiometry of the complex with respect to neat buffer conditions. Thermodynamic studies reveal that binding becomes more thermodynamically favorable in the ATPS due to entropic effects, as the strong excluded volume effect inside ATPS droplets reduces the entropic penalty associated with binding. Finally, the binding affinity of BCl for the c-MYC GQ is higher than those for other DNA structures, indicating potential specific interactions. Overall, these findings will be helpful in the design of potential drugs targeting the c-MYC GQ structures in cancer-related biocondensates.
Collapse
Affiliation(s)
- Susmita Pradhan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Shubhangi Sharma
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 26, 80126 Naples, Italy
| | - Satyajit Patra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani 333031, Rajasthan, India
| |
Collapse
|
4
|
Pacheco-Pozo A, Balcerek M, Wyłomanska A, Burnecki K, Sokolov IM, Krapf D. Langevin Equation in Heterogeneous Landscapes: How to Choose the Interpretation. PHYSICAL REVIEW LETTERS 2024; 133:067102. [PMID: 39178429 DOI: 10.1103/physrevlett.133.067102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/05/2024] [Accepted: 07/03/2024] [Indexed: 08/25/2024]
Abstract
The Langevin equation is a common tool to model diffusion at a single-particle level. In nonhomogeneous environments, such as aqueous two-phase systems or biological condensates with different diffusion coefficients in different phases, the solution to a Langevin equation is not unique unless the interpretation of stochastic integrals involved is selected. We analyze the diffusion of particles in such systems and evaluate the mean, the mean square displacement, and the distribution of particles, as well as the variance of the time-averaged mean-square displacements. Our analytical results provide a method to choose the interpretation parameter from single-particle tracking experiments.
Collapse
|
5
|
Hazra B, Mandal R, Sahu J, Das S, Prasad M, Tarafdar PK. Self-immolation Assisted Morphology Transformation of Prebiotic Lipidated-cationic Amino Acids: Electro-droplet Mediated C-C Coupling Reaction to Synthesize Macromolecules. Chemistry 2024; 30:e202303555. [PMID: 38205907 DOI: 10.1002/chem.202303555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/12/2024]
Abstract
Compartmentalization protected biomolecules from the fluctuating environments of early Earth. Although contemporary cells mostly use phospholipid-based bilayer membranes, the utility of non-bilayer compartments was not ruled out during the prebiotic and modern eras. In the present study, we demonstrated the prebiotic synthesis of lipidated cationic amino acid-based amphiphiles [lauryl ester of lysine (LysL); ornithine (OrnL); and 2,4-diamino butyric acid (DabL)] using model dry-down reaction. These amphiphiles self-assemble into micellar membranes. However, the OrnL and DabL-based micelles undergo pH-responsive transformation to lipid droplet-like morphologies, a modelcompartment in the prebiotic Earth. These cationic droplets encapsulated prebiotic molecules (isoprene) and assisted electron transfer reaction to synthesize isoprenoid derivatives at primitive Earth conditions. The self-assembly of prebiotic amphiphiles, their transformation to droplet compartments, and droplet-assisted C-C bond formation reaction might have helped the evolution to synthesize various biomolecules required for the origin of life.
Collapse
Affiliation(s)
- Bibhas Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Raki Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Jayati Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Subrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Mahesh Prasad
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741 246, Mohanpur, Nadia, West Bengal, India
| |
Collapse
|
6
|
Campelo F, Tian M, von Blume J. Rediscovering the intricacies of secretory granule biogenesis. Curr Opin Cell Biol 2023; 85:102231. [PMID: 37657367 DOI: 10.1016/j.ceb.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023]
Abstract
Regulated secretion, an essential cellular process, relies on secretory granules (SGs) for the controlled release of a diverse range of cargo molecules, including proteins, peptides, hormones, enzymes, and neurotransmitters. SG biogenesis encompasses cargo selection, sorting, packaging, and trafficking, with the trans-Golgi Network (TGN) playing a central role. Research in the last three decades has revealed significant components required for SG biogenesis; however, no cargo receptor transferring granule cargo from the TGN to immature SGs (ISGs) has yet been identified. Consequently, recent research has devoted significant attention to studying receptor-independent cargo sorting mechanisms, shedding new light on the complexities of regulated secretion. Understanding the underlying molecular and biophysical mechanisms behind cargo sorting into ISGs holds great promise for advancing our knowledge of cellular communication and disease mechanisms.
Collapse
Affiliation(s)
- Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Meng Tian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Julia von Blume
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Polyansky AA, Gallego LD, Efremov RG, Köhler A, Zagrovic B. Protein compactness and interaction valency define the architecture of a biomolecular condensate across scales. eLife 2023; 12:e80038. [PMID: 37470705 PMCID: PMC10406433 DOI: 10.7554/elife.80038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/18/2023] [Indexed: 07/21/2023] Open
Abstract
Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.
Collapse
Affiliation(s)
- Anton A Polyansky
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| | - Laura D Gallego
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
| | - Roman G Efremov
- MM Shemyakin and Yu A Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscowRussian Federation
| | - Alwin Köhler
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- Medical University of Vienna, Center for Medical BiochemistryViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell BiologyViennaAustria
| | - Bojan Zagrovic
- Max Perutz Labs, Vienna Biocenter Campus (VBC)ViennaAustria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational BiologyViennaAustria
| |
Collapse
|