1
|
Erickson S, Lum C, Stephens K, Parashar M, Saini DK, Rout B, Park C, Peshek TJ, McMillon-Brown L, Ghosh S. Elucidating early proton irradiation effects in metal halide perovskites via photoluminescence spectroscopy. iScience 2025; 28:111586. [PMID: 39834868 PMCID: PMC11743089 DOI: 10.1016/j.isci.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Metal halide perovskite (MHP) solar cells are promising aerospace power sources given their potential as inexpensive, lightweight, and resilient solar electricity generators. Herein, the intrinsic radiation tolerance of unencapsulated methylammonium lead iodide/chloride (CH3NH3PbI3-xClx) films was isolated. Spatially resolved photoluminescence (PL) spectroscopy and confocal microscopy revealed the fundamental defect physics through optical changes as films were irradiated with 4.5 MeV neutrons and 20 keV protons at fluences between 5×1010 and 1×1016 p+/cm2. As proton radiation increased beyond 1×1013 p+/cm2, defects formed in the film, causing both a decrease in photoluminescence intensity and a 30% increase in surface darkening. All proton irradiated films additionally exhibited continuous increase of energy bandgaps and decreasing charge recombination lifetimes with increasing proton fluences. These optical changes in the absorber layer precede performance declines detectable in standard current-voltage measurements of complete solar cell devices and therefore have the potential of serving as early indicators of radiation tolerance.
Collapse
Affiliation(s)
- Samuel Erickson
- Department of Physics, University of California, Merced, Merced, CA, USA
| | - Calista Lum
- Department of Physics, University of California, Merced, Merced, CA, USA
| | - Katie Stephens
- Materials and Biomaterials Science and Engineering, University of California, Merced, Merced, CA, USA
| | | | | | - Bibhudutta Rout
- Department of Physics, University of North Texas, Denton, TX, USA
| | - Cheol Park
- Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, VA 23681, USA
| | - Timothy J. Peshek
- Photovoltaic and Electrochemical Systems Branch, John H. Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA
| | - Lyndsey McMillon-Brown
- Photovoltaic and Electrochemical Systems Branch, John H. Glenn Research Center, National Aeronautics and Space Administration, Cleveland, OH, USA
| | - Sayantani Ghosh
- Department of Physics, University of California, Merced, Merced, CA, USA
| |
Collapse
|
2
|
Deng L, Ran J, Wang B, Boziki A, Tkatchenko A, Jiang J, Prezhdo OV. Strong Dependence of Point Defect Properties in Metal Halide Perovskites on Description of van der Waals Interaction. J Phys Chem Lett 2024; 15:10465-10472. [PMID: 39392450 PMCID: PMC11514007 DOI: 10.1021/acs.jpclett.4c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Weaker than ionic and covalent bonding, van der Waals (vdW) interactions can have a significant impact on structure and function of molecules and materials, including stabilities of conformers and phases, chemical reaction pathways, electro-optical response, electron-vibrational dynamics, etc. Metal halide perovskites (MHPs) are widely investigated for their excellent optoelectronic properties, stemming largely from high defect tolerance. Although MHPs are primarily ionic compounds, we demonstrate that vdW interactions contribute ∼5% to the total energy, and that static, dynamics, electronic and optical properties of point defects in MHPs depend significantly on the vdW interaction model used. Focusing on widely studied CsPbBr3 with the common Br vacancy and interstitial defects, we compare the PBE, PBE+D3, PBE+TS, PBE+TS/HI and PBE+MBD-NL models and show that vdW interactions strongly alter the global and local geometric structure, and change the fundamental bandgap, midgap state energies and electron-vibrational coupling. The vdW interaction sensitivity stems from involvement of heavy and highly polarizable chemical elements and the soft MHP structure.
Collapse
Affiliation(s)
- Linjie Deng
- School of
Chemistry and Materials Science, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingyi Ran
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Bipeng Wang
- Department
of Chemical Engineering, University of Southern
California, Los Angeles, California 90089, United States
| | - Ariadni Boziki
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Jun Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, School of
Chemistry and Materials Science, University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
3
|
Negm A, Bakr MH, Howlader MMR, Ali SM. Deep Learning-Based Metasurface Design for Smart Cooling of Spacecraft. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3073. [PMID: 38063769 PMCID: PMC10707972 DOI: 10.3390/nano13233073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 09/15/2024]
Abstract
A reconfigurable metasurface constitutes an important block of future adaptive and smart nanophotonic applications, such as adaptive cooling in spacecraft. In this paper, we introduce a new modeling approach for the fast design of tunable and reconfigurable metasurface structures using a convolutional deep learning network. The metasurface structure is modeled as a multilayer image tensor to model material properties as image maps. We avoid the dimensionality mismatch problem using the operating wavelength as an input to the network. As a case study, we model the response of a reconfigurable absorber that employs the phase transition of vanadium dioxide in the mid-infrared spectrum. The feed-forward model is used as a surrogate model and is subsequently employed within a pattern search optimization process to design a passive adaptive cooling surface leveraging the phase transition of vanadium dioxide. The results indicate that our model delivers an accurate prediction of the metasurface response using a relatively small training dataset. The proposed patterned vanadium dioxide metasurface achieved a 28% saving in coating thickness compared to the literature while maintaining reasonable emissivity contrast at 0.43. Moreover, our design approach was able to overcome the non-uniqueness problem by generating multiple patterns that satisfy the design objectives. The proposed adaptive metasurface can potentially serve as a core block for passive spacecraft cooling applications. We also believe that our design approach can be extended to cover a wider range of applications.
Collapse
Affiliation(s)
- Ayman Negm
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
- Department of Electronics and Communications Engineering, Cairo University, Giza 12613, Egypt
| | - Mohamed H. Bakr
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Matiar M. R. Howlader
- Department of Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Shirook M. Ali
- School of Mechanical and Electrical Engineering Technology, Sheridan College, Brampton, ON L6Y 5H9, Canada;
| |
Collapse
|
4
|
Afshari H, Durant BK, Kirmani AR, Chacon SA, Mahoney J, Whiteside VR, Scheidt RA, Beard MC, Luther JM, Sellers IR. Temperature-Dependent Carrier Extraction and the Effects of Excitons on Emission and Photovoltaic Performance in Cs 0.05FA 0.79MA 0.16Pb(I 0.83Br 0.17) 3 Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44358-44366. [PMID: 36150132 DOI: 10.1021/acsami.2c11657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The photovoltaic parameters of triple cation perovskite [Cs0.05FA0.79MA0.16Pb(I0.83Br0.17)3] solar cells are investigated focusing on the electro-optical properties and differences in performance at low and high temperatures. The signature of a parasitic barrier to carrier extraction is observed at low temperatures, which results in a loss of performance at T < 200 K. Intensity-dependent measurements indicate extraction across this parasitic interface is limited by a combination of the exciton binding energy and thermionic emission. However, the photovoltaic performance of the device is recovered at low intensity─where the photocarrier generation rate threshold is lower than the thermionic extraction rate. Loss of solar cell performance is also observed to be strongly correlated to an increase in photoluminescence intensity, indicating inhibited carrier extraction results in strong radiative recombination and that these systems do not appear to be limited by significant thermally activated non-radiative processes. Evidence of limited carrier extraction due to excitonic effects is also observed with a strong anti-correlation in photoluminescence and carrier extraction observed at lower temperatures.
Collapse
Affiliation(s)
- Hadi Afshari
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Brandon K Durant
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Ahmad R Kirmani
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado, United States
| | - Sergio A Chacon
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - John Mahoney
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Vincent R Whiteside
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Rebecca A Scheidt
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado, United States
| | - Matthew C Beard
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado, United States
| | - Joseph M Luther
- National Renewable Energy Laboratory (NREL), Golden 80401, Colorado, United States
| | - Ian R Sellers
- Department of Physics & Astronomy, University of Oklahoma, Norman 73019, Oklahoma, United States
| |
Collapse
|
5
|
Romano V, Agresti A, Verduci R, D’Angelo G. Advances in Perovskites for Photovoltaic Applications in Space. ACS ENERGY LETTERS 2022; 7:2490-2514. [PMID: 35990414 PMCID: PMC9380018 DOI: 10.1021/acsenergylett.2c01099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Perovskites have emerged as promising light harvesters in photovoltaics. The resulting solar cells (i) are thin and lightweight, (ii) can be produced through solution processes, (iii) mainly use low-cost raw materials, and (iv) can be flexible. These features make perovskite solar cells intriguing as space technologies; however, the extra-terrestrial environment can easily cause the premature failure of devices. In particular, the presence of high-energy radiation is the most dangerous factor that can damage space technologies. This Review discusses the status and perspectives of perovskite photovoltaics in space applications. The main factors used to describe the space environment are introduced, and the results concerning the radiation hardness of perovskites toward protons, electrons, neutrons, and γ-rays are presented. Emphasis is given to the physicochemical processes underlying radiation damage in such materials. Finally, the potential use of perovskite solar cells in extra-terrestrial conditions is discussed by considering the effects of the space environment on the choice of the architecture and components of the devices.
Collapse
Affiliation(s)
- Valentino Romano
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department
of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Antonio Agresti
- CHOSE
(Center for Hibrid and Organic Solar Energy), Department of Electronics
Engineering, University of Rome Tor Vergata, 00133 Roma, Italy
| | - Rosaria Verduci
- Department
of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Giovanna D’Angelo
- Department
of Mathematical and Computer Sciences, Physical Sciences and Earth
Sciences, University of Messina, 98166 Messina, Italy
- CNR,
Institute for Chemical-Physical Processes (IPCF), 98158 Messina, Italy
| |
Collapse
|
6
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal‐Free PAZE‐NH4X3·H2O Perovskite for Flexible Transparent X‐ray Detection and Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhizai Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Guoqiang Peng
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Huanyu Chen
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Chang Shi
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhenhua Li
- Lanzhou University Structure Design, MoE & National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology, Lanzhou University, Lanzhou 730000, China Lanzhou Tianshui South Road No. 222, Lanzhou, Ganshu Province, China, 730000 730000 Lanzhou CHINA
| | - Zhiwen Jin
- Lanzhou University School of Physical Science and Technology Lanzhou University, Lanzhou 730000, P. R. China. Lanzhou CHINA
| |
Collapse
|
7
|
Li Z, Peng G, Chen H, Shi C, Li Z, Jin Z. Metal-Free PAZE-NH 4 X 3 ⋅H 2 O Perovskite for Flexible Transparent X-ray Detection and Imaging. Angew Chem Int Ed Engl 2022; 61:e202207198. [PMID: 35726524 DOI: 10.1002/anie.202207198] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/11/2022]
Abstract
Metal-free perovskites are of interest for their chemical diversity and eco-friendly properties, and recently have been used for X-ray detection with superior carrier behavior. However, the size and shape complexity of the organic components results in difficulties in evaluating their stability in high-energy radiation. Herein, we introduce multiple hydrogen-bond metal-free PAZE-NH4 X3 ⋅H2 O perovskite, where H2 O leads to more hydrogen bonds appearing between organic molecules and the perovskite host. As suggested by the theoretical calculations, multiple hydrogen bonds promote stiffness of the lattice, and increase the diffusion barrier to inhibit ionic migration. Then, low trap density, high μτ products and structural flexibility of PAZE-NH4 Br3 ⋅H2 O give a flexible X-ray detector with the highest sensitivity of 3708 μC Gyair -1 cm-2 , ultra-low detection limit of 0.19 μGyair -1 s-1 and superior spatial resolution of 5.0 lp mm-1 .
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Huanyu Chen
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & College of Chemistry and Chemical Engineering & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|