1
|
Sun J, Skanata A, Movileanu L. Single-Molecule Observation of Competitive Protein-Protein Interactions Utilizing a Nanopore. ACS NANO 2025; 19:1103-1115. [PMID: 39718930 PMCID: PMC11752528 DOI: 10.1021/acsnano.4c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
Two or more protein ligands may compete against each other to interact transiently with a protein receptor. While this is a ubiquitous phenomenon in cell signaling, existing technologies cannot identify its kinetic complexity because specific subpopulations of binding events of different ligands are hidden in the averaging process in an ensemble. In addition, the limited time resolution of prevailing methods makes detecting and discriminating binding events among diverse interacting partners challenging. Here, we utilize a genetically encoded nanopore sensor to disentangle competitive protein-protein interactions (PPIs) in a one-on-one and label-free fashion. Our measurements involve binary mixtures of protein ligands of varying binding affinity against the same receptor, which was externally immobilized on the nanopore tip. We use the resistive-pulse technique to monitor the kinetics and dynamics of reversible PPIs without the nanopore confinement, with a high-time bandwidth, and at titratable ligand concentrations. In this way, we systematically evaluate how individual protein ligands take their turn to reside on the receptor's binding site. Further, our single-molecule determinations of these interactions are quantitatively compared with data generated by a two-ligand, one-receptor queuing model. The outcomes of this work provide a fundamental basis for future developments aimed at a better mechanistic understanding of competitive PPIs. Moreover, they may also form a platform in drug development pipelines targeting high-complexity PPIs mediated by protein hubs.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Antun Skanata
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
| |
Collapse
|
2
|
Sinha A, Tony AMC, Roy S. How fingers affect folding of a thumb: Inter-subdomain cooperation in the folding of SARS-CoV-2 RdRp protein. Biophys Chem 2025; 316:107342. [PMID: 39490134 DOI: 10.1016/j.bpc.2024.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a critical enzyme essential for the virus's replication and transcription, making it a key therapeutic target. The RdRp protein exhibits a characteristic cupped right-hand shaped structure with two vital subdomains: the fingers and the thumb. Despite being distinct, biophysical experiments suggest that these subdomains cooperate to facilitate RNA accommodation, ensuring RdRp functionality. To investigate the structure-based mechanisms underlying the fingers-thumb interaction in both apo and RNA-bound RdRp, we constructed a coarse-grained structure-based model based on recent cryo-electron microscopy data. The simulations reveal frequent open-to-closed conformational transitions in apo RdRp, akin to a breathing-like motion. These conformational changes are regulated by the fingers-thumb association and the folding dynamics of the thumb subdomain. The thumb adopts a stable fold only when tethered by the fingers-thumb interface; when these subdomains are disconnected, the thumb transitions into an open state. A significant number of open-to-closed transition events were analyzed to generate a transition contact probability map, which highlights a few specific residues at the thumb-fingers interface, distant from the RNA accommodation sites, as essential for inducing the thumb's folding process. Given that thumb subdomain folding is critical for RNA binding and viral replication, the study proposes that these interfacial residues may function as remote regulatory switches and could be targeted for the development of allosteric drugs against SARS-CoV-2 and similar RNA viruses.
Collapse
Affiliation(s)
- Anushree Sinha
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Angel Mary Chiramel Tony
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal 741246, India.
| |
Collapse
|
3
|
Pérez-Ropero G, Pérez-Ràfols A, Martelli T, Danielson UH, Buijs J. Unraveling the Bivalent and Rapid Interactions Between a Multivalent RNA Recognition Motif and RNA: A Kinetic Approach. Biochemistry 2024; 63:2816-2829. [PMID: 39397705 PMCID: PMC11542179 DOI: 10.1021/acs.biochem.4c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
The kinetics of the interaction between Musashi-1 (MSI1) and RNA have been characterized using surface plasmon resonance biosensor analysis. Truncated variants of human MSI1 encompassing the two homologous RNA recognition motifs (RRM1 and RRM2) in tandem (aa 1-200), and the two RRMs in isolation (aa 1-103 and aa 104-200, respectively) were produced. The proteins were injected over sensor surfaces with immobilized RNA, varying in sequence and length, and with one or two RRM binding motifs. The interactions of the individual RRMs with all RNA variants were well described by a 1:1 interaction model. The interaction between the MSI1 variant encompassing both RRM motifs was bivalent and rapid for all RNA variants. Due to difficulties in fitting this complex data using standard procedures, we devised a new method to quantify the interactions. It revealed that two RRMs in tandem resulted in a significantly longer residence time than a single RRM. It also showed that RNA with double UAG binding motifs and potential hairpin structures forms less stable bivalent complexes with MSI1 than the single UAG motif containing linear RNA. Substituting the UAG binding motif with a CAG sequence resulted in a reduction of the affinity of the individual RRMs, but for MSI1, this reduction was strongly enhanced, demonstrating the importance of bivalency for specificity. This study has provided new insights into the interaction between MSI1 and RNA and an understanding of how individual domains contribute to the overall interaction. It provides an explanation for why many RNA-binding proteins contain dual RRMs.
Collapse
Affiliation(s)
- Guillermo Pérez-Ropero
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
- MRC
Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, U.K.
| | - Tommasso Martelli
- Department
of Chemistry “Ugo Schiff″, Magnetic Resonance Center
(CERM), University of Florence, Florence 50019, Italy
- Giotto
Biotech s.r.l, Sesto Fiorentino, Florence 50019, Italy
| | - U. Helena Danielson
- Department
of Chemistry − BMC, Uppsala University, Uppsala SE 751 23, Sweden
- Science for
Life Laboratory, Drug Discovery & Development Platform, Uppsala University, Uppsala SE 751 23, Sweden
| | - Jos Buijs
- Ridgeview
Instruments AB, Uppsala SE 752 37, Sweden
- Department
of Immunology, Genetics and Pathology, Uppsala
University, Uppsala SE 751 85, Sweden
| |
Collapse
|
4
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
5
|
Ahmad M, Imran A, Movileanu L. Overlapping characteristics of weak interactions of two transcriptional regulators with WDR5. Int J Biol Macromol 2024; 258:128969. [PMID: 38158065 PMCID: PMC10922662 DOI: 10.1016/j.ijbiomac.2023.128969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
The WD40 repeat protein 5 (WDR5) is a nuclear hub that critically influences gene expression by interacting with transcriptional regulators. Utilizing the WDR5 binding motif (WBM) site, WDR5 interacts with the myelocytomatosis (MYC), an oncoprotein transcription factor, and the retinoblastoma-binding protein 5 (RbBP5), a scaffolding element of an epigenetic complex. Given the clinical significance of these protein-protein interactions (PPIs), there is a pressing necessity for a quantitative assessment of these processes. Here, we use biolayer interferometry (BLI) to examine interactions of WDR5 with consensus peptide ligands of MYC and RbBP5. We found that both interactions exhibit relatively weak affinities arising from a fast dissociation process. Remarkably, live-cell imaging identified distinctive WDR5 localizations in the absence and presence of full-length binding partners. Although WDR5 tends to accumulate within nucleoli, WBM-mediated interactions with MYC and RbBP5 require their localization outside nucleoli. We utilize fluorescence resonance energy transfer (FRET) microscopy to confirm these weak interactions through a low FRET efficiency of the MYC-WDR5 and RbBP5-WDR5 complexes in living cells. In addition, we evaluate the impact of peptide and small-molecule inhibitors on these interactions. These outcomes form a fundamental basis for further developments to clarify the multitasking role of the WBM binding site of WDR5.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Ali Imran
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
6
|
Baranov O, Bazaka K, Belmonte T, Riccardi C, Roman HE, Mohandas M, Xu S, Cvelbar U, Levchenko I. Recent innovations in the technology and applications of low-dimensional CuO nanostructures for sensing, energy and catalysis. NANOSCALE HORIZONS 2023; 8:568-602. [PMID: 36928662 DOI: 10.1039/d2nh00546h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology. In this article we briefly outline some of the most recent, mostly within the past two years, innovations in well-established fabrication technologies, including oxygen plasma-based methods, self-assembly and electric-field assisted growth, electrospinning and thermal oxidation approaches. Recent progress in several key types of leading-edge applications of CuO nanostructures, mostly for energy, sensing and catalysis, is also reviewed. Besides, we briefly outline and stress novel insights into the effect of various process parameters on the growth of low-dimensional copper oxide nanostructures, such as the heating rate, oxygen flow, and roughness of the substrates. These insights play a key role in establishing links between the structure, properties and performance of the nanomaterials, as well as finding the cost-and-benefit balance for techniques that are capable of fabricating low-dimensional CuO with the desired properties and facilitating their integration into more intricate material architectures and devices without the loss of original properties and function.
Collapse
Affiliation(s)
- Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine.
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Kateryna Bazaka
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | | | - Claudia Riccardi
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - H Eduardo Roman
- Dipartimento di Fisica "Giuseppe Occhialini", Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, I20126 Milan, Italy
| | - Mandhakini Mohandas
- Center for Nanoscience and Technology, Anna University, Chennai, 600 025, India
| | - Shuyan Xu
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| | - Uroš Cvelbar
- Department of Gaseous Electronics, Jozef Stefan Institute, Ljubljana 1000, Slovenia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore.
| |
Collapse
|
7
|
Ahmad M, Ha JH, Mayse LA, Presti MF, Wolfe AJ, Moody KJ, Loh SN, Movileanu L. A generalizable nanopore sensor for highly specific protein detection at single-molecule precision. Nat Commun 2023; 14:1374. [PMID: 36941245 PMCID: PMC10027671 DOI: 10.1038/s41467-023-36944-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
Protein detection has wide-ranging implications in molecular diagnostics. Substantial progress has been made in protein analytics using nanopores and the resistive-pulse technique. Yet, a long-standing challenge is implementing specific interfaces for detecting proteins without the steric hindrance of the pore interior. Here, we formulate a class of sensing elements made of a programmable antibody-mimetic binder fused to a monomeric protein nanopore. This way, such a modular design significantly expands the utility of nanopore sensors to numerous proteins while preserving their architecture, specificity, and sensitivity. We prove the power of this approach by developing and validating nanopore sensors for protein analytes that drastically vary in size, charge, and structural complexity. These analytes produce unique electrical signatures that depend on their identity and quantity and the binder-analyte assembly at the nanopore tip. The outcomes of this work could impact biomedical diagnostics by providing a fundamental basis for biomarker detection in biofluids.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
| | - Jeung-Hoi Ha
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Lauren A Mayse
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA
| | - Maria F Presti
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Aaron J Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kelsey J Moody
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA
- Ichor Life Sciences, Inc., 2561 US Route 11, LaFayette, NY, 13084, USA
- Lewis School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, NY, 13699, USA
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York-Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Avenue, Syracuse, NY, 13210, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, NY, 13244-1130, USA.
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY, 13244, USA.
- The BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
8
|
Grafted dinuclear zinc complexes for selective recognition of phosphatidylserine: Application to the capture of extracellular membrane microvesicles. J Inorg Biochem 2023; 239:112065. [PMID: 36403435 DOI: 10.1016/j.jinorgbio.2022.112065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022]
Abstract
Microvesicles (MVs) are key markers in human body fluids that reflect cellular activation related to diseases as thrombosis. These MVs display phosphatidylserine at the outer leaflet of their plasma membrane as specific recognition moieties. The work reported in this manuscript focuses on the development of an original method where MVs are captured by bimetallic zinc complexes. A set of ligands have been synthetized based on a phenol spacer bearing in para position an amine group appended to a short or a longer alkyl chain (for grafting on surface) and bis(dipicolylamine) arms in ortho position (for zinc coordination). The corresponding dibridged zinc phenoxido and hydroxido complexes have been prepared in acetronitrile in presence of triethylamine and characterized by several spectroscopic techniques. The pH-driven interconversion studies for both complexes in H2O:DMSO (70:30) evidence that at physiologic pH the main species are mono-bridged by the phenoxido spacer. An X-Ray structure obtained from complex 2 (based on the ligand with the amine group on the short chain) in aqueous medium confirms the presence of a mono-bridged complex. Then, the complexes have been used for interaction studies with short-chain phospholipids. Both have established the selective recognition of the anionic phosphatidylserine model versus zwitterionic phospholipids (in solution by 31P NMR and after immobilization on solid support by surface plasmon resonance (SPR)). Moreover, both complexes have also demonstrated their ability to capture MVs isolated from human plasma. These complexes are thus promising candidates for MVs probing by a new approach based on coordination chemistry.
Collapse
|
9
|
Imran A, Moyer BS, Kalina D, Duncan TM, Moody KJ, Wolfe AJ, Cosgrove MS, Movileanu L. Convergent Alterations of a Protein Hub Produce Divergent Effects within a Binding Site. ACS Chem Biol 2022; 17:1586-1597. [PMID: 35613319 PMCID: PMC9207812 DOI: 10.1021/acschembio.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Progress in tumor sequencing and cancer databases has created an enormous amount of information that scientists struggle to sift through. While several research groups have created computational methods to analyze these databases, much work still remains in distinguishing key implications of pathogenic mutations. Here, we describe an approach to identify and evaluate somatic cancer mutations of WD40 repeat protein 5 (WDR5), a chromatin-associated protein hub. This multitasking protein maintains the functional integrity of large multi-subunit enzymatic complexes of the six human SET1 methyltransferases. Remarkably, the somatic cancer mutations of WDR5 preferentially distribute within and around an essential cavity, which hosts the WDR5 interaction (Win) binding site. Hence, we assessed the real-time binding kinetics of the interactions of key clustered WDR5 mutants with the Win motif peptide ligands of the SET1 family members (SET1Win). Our measurements highlight that this subset of mutants exhibits divergent perturbations in the kinetics and strength of interactions not only relative to those of the native WDR5 but also among various SET1Win ligands. These outcomes could form a fundamental basis for future drug discovery and other developments in medical biotechnology.
Collapse
Affiliation(s)
- Ali Imran
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Brandon S. Moyer
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
| | - Dan Kalina
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
| | - Thomas M. Duncan
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Kelsey J. Moody
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Aaron J. Wolfe
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Ichor
Life Sciences, Inc., 2651 US Route 11, LaFayette, New York 13084, United
States
- Department
of Chemistry, State University of New York
College of Environmental Science and Forestry, 1 Forestry Dr., Syracuse, New York 13210, United States
- Lewis
School of Health Sciences, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Michael S. Cosgrove
- Department
of Biochemistry and Molecular Biology, State
University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving
Avenue, Syracuse, New York 13210, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United
States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Pons M, Perenon M, Bonnet H, Gillon E, Vallée C, Coche-Guérente L, Defrancq E, Spinelli N, Van der Heyden A, Dejeu J. Conformational transition in SPR experiments: impact of spacer length, immobilization mode and aptamer density on signal sign and amplitude. Analyst 2022; 147:4197-4205. [DOI: 10.1039/d2an00824f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spacer length and immobilization mode impact the Surface plasmon resonance (SPR) signal and affinity measured for small target/aptamer recognition. The signal could be positive, negative or null explained by refractive index increment deviation.
Collapse
Affiliation(s)
- Marina Pons
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Marine Perenon
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Hugues Bonnet
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Emilie Gillon
- Univ. Grenoble Alpes, CERMAV-CNRS, 601 rue de la chimie, F-38610 Gières, France
| | - Celio Vallée
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | | | - Eric Defrancq
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | - Nicolas Spinelli
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
| | | | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM UMR-5250, F-38000 Grenoble, France
- FEMTO-ST Institute, CNRS UMR-6174, Université de Bourgogne Franche-Comté, F-25000 Besançon, France
| |
Collapse
|