1
|
Lei T, Ge M, Wang W. Analysis of Atmospheric Particles: From the Bulk to the Interface. Anal Chem 2025; 97:9554-9568. [PMID: 40304094 DOI: 10.1021/acs.analchem.4c06795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Affiliation(s)
- Ting Lei
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Weigang Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
2
|
Gao XF, Hood D, Nathanson GM. Deducing Reaction and Diffusion Depths of Near-Interfacial Solvated Electrons from pH-Dependent Product Evaporation. J Phys Chem B 2025; 129:1795-1804. [PMID: 39898508 DOI: 10.1021/acs.jpcb.4c07892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Near-interfacial electrons in water can be produced by bombarding an aqueous microjet in vacuum with gas-phase sodium atoms. These Na atoms immediately ionize into Na+ and es-, which can then react with surface-active molecules that preferentially populate the surface. We carried out these experiments by reacting es- with the surfactant benzyltrimethylammonium (BTMA+) in a 6.7 M LiBr/H2O microjet at 242 K as a function of pH between 1 and 5. The reaction products, trimethylamine (TMA) and benzyl radical, evaporate into the gas phase where they are detected by a mass spectrometer. We find that TMA evaporation sharply diminishes with increasing H+ concentration and is barely visible at pH = 1, while benzyl evaporation varies much less. These results indicate that TMA protonation overwhelms TMA evaporation at 0.1 M H+. Diffusion-reaction modeling matches the observed trends and predicts that es- reacts with BTMA+ within the top 20 Å at all pH values. However, TMA molecules that evaporate and escape protonation diffuse on average only over 20 Å at pH = 1 but over 1000 Å at pH = 5. These observations emphasize that the near-interfacial region provides a controllable reaction environment that is also an escape route for volatile intermediates, a route that is unavailable deep in the bulk. The competition between evaporation and reaction depends on the solubility of the intermediate, the location of its creation, and the propensity for secondary reactions.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David Hood
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Roterman I, Slupina M, Konieczny L. Protein folding: Funnel model revised. Comput Struct Biotechnol J 2024; 23:3827-3838. [PMID: 39525086 PMCID: PMC11550765 DOI: 10.1016/j.csbj.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The spatial structure of proteins, largely determined by their amino acid sequences, is also dependent on the environmental conditions under which the folding process takes place. In aqueous environments, exposure of polar amino acids is the driving factor, whereas protein stabilization in amphipathic membranes requires exposure to hydrophobic residues. This observation can be extended to all other environmental conditions under which proteins exhibit biological activity and, most importantly, to the folding process. The fuzzy oil drop (FOD) model assumes a centric location of hydrophobic residues (hydrophobic core) with exposure of polar residues towards the aqueous environment, as the influence of the aqueous environment is extended to include the contribution of other non-aqueous factors, enabling the assessment of their influence on protein structuring. The application of the modified FOD model (FOD-M) we have developed allows the environment to be represented as an external force field in the form of a continuum. The role of environmental conditions allows modification of the funnel model expressing the localization of the energy minimum as dependent on external conditions expressed by the K scale, where K measures the degree of other than polar water factors participating in folding process.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Mateusz Slupina
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688 Kraków, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kopernika 7, 31-034 Kraków, Poland
| |
Collapse
|
4
|
Chen Z, Li Z, Xie J, Zhang P, Tong T, Wang Y, Hu J, Wörner HJ, Tian SX. Direct Observation of Anionic Yields from the Liquid-Vapor Interface by Electron Irradiation. J Phys Chem Lett 2024; 15:5607-5611. [PMID: 38758196 DOI: 10.1021/acs.jpclett.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Dissociative electron attachment (DEA) is widely believed to play a high-profile role in ionizing radiation damages of bioorganic molecules, and its fundamentals are mainly learned from the gas-phase studies. However, the DEA process in aqueous solution is still in debate. Here we provide experimental evidence about the DEA processes of liquid methanol by using electron-impact-time-delayed mass spectrometry. In contrast to the gas- and solid-phase DEAs, methoxide ion CH3O- is the predominant product from the liquid interface. Furthermore, this anion can be produced with both the primary low-energy electrons and the inelastically scattered and secondary low-energy electrons. On the contrary, the primary low-energy electrons in the liquid bulk are more likely to be solvated, rather than directly participating in the DEA process. Our study provides new insights into radiation chemistry, particularly of bioorganic relevance.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ziyuan Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jingchen Xie
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pengju Zhang
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Tiantian Tong
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Shan Xi Tian
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
5
|
Roterman I, Stapor K, Konieczny L. Ab initio protein structure prediction: the necessary presence of external force field as it is delivered by Hsp40 chaperone. BMC Bioinformatics 2023; 24:418. [PMID: 37932669 PMCID: PMC10629080 DOI: 10.1186/s12859-023-05545-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/27/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The aqueous environment directs the protein folding process towards the generation of micelle-type structures, which results in the exposure of hydrophilic residues on the surface (polarity) and the concentration of hydrophobic residues in the center (hydrophobic core). Obtaining a structure without a hydrophobic core requires a different type of external force field than those generated by a water. The examples are membrane proteins, where the distribution of hydrophobicity is opposite to that of water-soluble proteins. Apart from these two extreme examples, the process of protein folding can be directed by chaperones, resulting in a structure devoid of a hydrophobic core. RESULTS The current work presents such example: DnaJ Hsp40 in complex with alkaline phosphatase PhoA-U (PDB ID-6PSI)-the client molecule. The availability of WT form of the folding protein-alkaline phosphatase (PDB ID-1EW8) enables a comparative analysis of the structures: at the stage of interaction with the chaperone and the final, folded structure of this biologically active protein. The fuzzy oil drop model in its modified FOD-M version was used in this analysis, taking into account the influence of an external force field, in this case coming from a chaperone. CONCLUSIONS The FOD-M model identifies the external force field introduced by chaperon influencing the folding proces. The identified specific external force field can be applied in Ab Initio protein structure prediction as the environmental conditioning the folding proces.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Medyczna 7, 30-688, Krakow, Poland.
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
| | - Leszek Konieczny
- Chair of Medical Biochemistry, Jagiellonian University - Medical College, Kopernika 7, 31-034, Krakow, Poland
| |
Collapse
|
6
|
Gao XF, Nathanson GM. Exploring Gas-Liquid Reactions with Microjets: Lessons We Are Learning. Acc Chem Res 2022; 55:3294-3302. [PMID: 36378763 DOI: 10.1021/acs.accounts.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a "blow by blow" picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Zhou J, Belina M, Jia S, Xue X, Hao X, Ren X, Slavíček P. Ultrafast Charge and Proton Transfer in Doubly Ionized Ammonia Dimers. J Phys Chem Lett 2022; 13:10603-10611. [PMID: 36350084 DOI: 10.1021/acs.jpclett.2c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xintai Hao
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| |
Collapse
|
8
|
Majima T, Mizunami Y, Teramoto T, Tsuchida H, Saito M. Fast Heavy-Ion-Induced Anion–Molecule Reactions on the Methanol Droplet Surface. J Phys Chem A 2022; 126:8988-8996. [DOI: 10.1021/acs.jpca.2c06387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Takuya Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Yuki Mizunami
- Department of Nuclear Engineering, Kyoto University, Kyoto615-8540, Japan
| | - Takahiro Teramoto
- Institute for Radiation Sciences, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Hidetsugu Tsuchida
- Department of Nuclear Engineering, Kyoto University, Kyoto615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji611-0011, Japan
| | - Manabu Saito
- Department of Nuclear Engineering, Kyoto University, Kyoto615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji611-0011, Japan
| |
Collapse
|
9
|
Abstract
Reaction dynamics in the liquid-vapor interface is one of the crucial physical sciences but is still starving for in-depth exploration. It is challenging to selectively detect the interfacial species or the yields of chemical reaction therein, meanwhile shielding or reducing the interference from the vapor and liquid bulk. Mass spectrometry is a straightforward method but is also frustrated in such a selective detection. Using a liquid microjet in combination with a pulsed electron beam, a linear time-of-flight mass spectrometer, and a quadrupole mass filter, we recently innovated time-delayed mass spectrometry for investigations of the liquid-vapor interface. In this Account, we illustrate how this unique method succeeds in disentangling different sources, i.e., the vapor and liquid-vapor interface, of the ionic yields of the electron impacts with a liquid beam of alcohol in vacuum. These achievements are basically attributed to the application of an onion-peeling strategy in the ion detection. Concretely, the microsecond time scale of molecular volatilization can be resolved well by tuning the delay time between the nanosecond pulses of incident electron bunch and ion attractor. First, the specific orientation of the interfacial molecule, i.e., a well-known fact about the hydrophobic hydrocarbon groups pointing outside the liquid surface of alcohol, is validated again. More importantly, the dynamic features of time-delayed mass spectra, in particular, for the ionic yields from the liquid-vapor interface, are rationalized explicitly. Moreover, we demonstrate evidence of in situ molecular dimers in the liquid-vapor interface of 1-propanol. As the first example of electron-induced reaction in the liquid-vapor interface, dimethyl ether can be synthesized in the liquid methanol interface due to local interfacial acidification by high-energy electron impacts. On the contrary, the low energy electron can lead to local basicity through dissociative electron attachment (DEA). Besides the primary low-energy electrons, the low-energy secondary and inelastically scattered electrons in the higher-energy impacts of the primary electrons can also participate in the DEA process. In contrast to the gas- or solid-phase DEAs, that in the liquid-vapor interface shows distinct differences in both the types and efficiencies of anionic products. With these and efforts in the future, we develop a molecular-level understanding of how the chemical reactions happen in the liquid-vapor interface.
Collapse
Affiliation(s)
| | | | | | - Shan Xi Tian
- Hefei National Laboratory, University of Science and Technology of China, Wangjiang West Road, Hefei230088, China
| |
Collapse
|