1
|
Zhang C, Si WD, Tian WD, Xiao WJ, Gao ZY, Wang Z, Tung CH, Sun D. Single-atom "surgery" on chiral all-dialkynyl-protected superatomic silver nanoclusters. Sci Bull (Beijing) 2025; 70:365-372. [PMID: 39562187 DOI: 10.1016/j.scib.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
The manipulation of single atom within the metallic kernel of nanoclusters has attracted considerable attention due to its potentials to elucidate kernel-based structure-property relationships at the single-atom level. Herein, new-designed chiral bialkynyl ligands, have been chosen as protective agents to isolate two pairs of 8-electron superatomic silver nanoclusters, R/S-Ag39 and R/S-Ag40. X-ray diffraction analysis reveals that Ag39 and Ag40 with the same number of chiral ligands, possess a closely analogous silver skeleton but a single-atomic difference. The incorporation of an extra Ag40th atom into Ag40 evokes two significant changes of structure and property compared to Ag39: (i) a reduction in the symmetry of the entire nanocluster, resulting in an enhancement of kernel-related asymmetry g-factor; (ii) a regulation of the transitions (1P → 1D and Ligand(π) → 1D) of excited state, leading to a second near-infrared (NIR-II, 1000-1700 nm) phosphorescent emission red-shift from 1088 to 1150 nm. This work not only provides vital insights into the relationship between structures and ground/excited states chiroptical activities at the single-atom level, but also presents bialkynyl as a promising stabilizing agent for building superatomic metal nanoclusters.
Collapse
Affiliation(s)
- Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wei-Dong Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Wan-Jun Xiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
2
|
Li H, Li P, Zhang J, Lin Z, Bai L, Shen H. Applications of nanotheranostics in the second near-infrared window in bioimaging and cancer treatment. NANOSCALE 2024; 16:21697-21730. [PMID: 39508492 DOI: 10.1039/d4nr03058c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Achieving accurate and efficient tumor imaging is crucial in the field of tumor treatment, as it facilitates early detection and precise localization of tumor tissues, thereby informing therapeutic strategies and surgical interventions. The optical imaging technology within the second near-infrared (NIR-II) window has garnered significant interest for its remarkable benefits, such as enhanced tissue penetration depth, superior signal-to-background ratio (SBR), minimal tissue autofluorescence, reduced photon attenuation, and lower tissue scattering. This review explained the design and optimization strategies of nano-agents responsive to the NIR-II window, such as single-walled carbon nanotubes, quantum dots, lanthanum-based nanomaterials, and noble metal nanomaterials. These nano-agents enable non-invasive, deep-tissue imaging with high spatial resolution in the NIR-II window, and their superior optical properties significantly improve the accuracy, efficiency, and versatility of imaging-guided tumor treatments. And we discussed the characteristics and advantages of fluorescence imaging (FL)/photoacoustic imaging (PA) in NIR-II window, providing a comprehensive overview of the latest research progress of different nano-agents in FL/PA imaging-guided tumor therapy. Furthermore, we exhaustively reviewed the latest applications of multifunctional nano-phototherapy technologies carried out by NIR-II light including photothermal therapy (PTT), photodynamic therapy (PDT), and combined modalities like photothermal-chemodynamic therapy (PTT-CDT), photothermal-chemotherapy (PTT-CT), and photothermal- immunotherapy (PTT-IO). These imaging-guided integrated tumor therapy approaches within the NIR-II window have gradually matured over the past decade and are expected to become a safe and effective non-invasive tumor treatment. Finally, we outlined the prospects and challenges of development and innovation of the NIR-II integrated diagnosis and therapy nanoplatform. This review aims to provide insightful perspectives for future advancements in NIR-II optical tumor diagnosis and integrated treatment platforms.
Collapse
Affiliation(s)
- Huimin Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Pengju Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Jiarui Zhang
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ziyi Lin
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lintao Bai
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Heyun Shen
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Xiang H, Wang Y, Xu X, Ruan C, Wang K, Cheng W, Zhou M, Liu X, Yao C. Reversible Interconversion between Ag 2 and Ag 6 Clusters and Their Responsive Optical Properties. J Am Chem Soc 2024. [PMID: 39373653 DOI: 10.1021/jacs.4c11727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The exploration of structural interconversion in clusters triggered by external stimuli has attracted significant interest due to its potential to elucidate structure-property relationships of metal clusters. In this study, two types of silver clusters, Ag2 and Ag6, are synthesized. Interestingly, the clusters exhibit reversible transformations in response to changes in the solvent conditions. The structures and optical properties of these clusters are thoroughly characterized using techniques such as mass spectrometry, single-crystal X-ray diffraction, photoluminescence, and radioluminescence spectroscopy. While both Ag2 and Ag6 display excellent photoluminescence properties, Ag2 demonstrates superior performance in X-ray radioluminescence compared to Ag6. Flexible scintillator films fabricated from Ag2 clusters exhibit outstanding X-ray imaging capabilities, achieving a spatial resolution of 15.0 lp/mm and an impressive detection limit for an X-ray dose of 0.58 μGy s-1. This detection limit is nearly 10 times lower than the typical dose rate used in X-ray diagnostics (5.5 μGy s-1). This work introduces a novel approach for designing thiol-free silver clusters capable of solvent-dependent reversible interconversion, offering new insights into the development of silver clusters for advanced X-ray imaging applications.
Collapse
Affiliation(s)
- Huixin Xiang
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Yanze Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Xinqi Xu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Chenhao Ruan
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Kunpeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wanyu Cheng
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| | - Chuanhao Yao
- Strait Laboratory of Flexible Electronics, Fujian Key Laboratory of Flexible Electronics, Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
4
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
5
|
Lin Z, Lv Y, Jin S, Yu H, Zhu M. Size Growth of Au 4Cu 4: From Increased Nucleation to Surface Capping. ACS NANO 2023; 17:8613-8621. [PMID: 37115779 DOI: 10.1021/acsnano.3c01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The size conversion of atomically precise metal nanoclusters is fundamental for elucidating structure-property correlations. In this study, copper salt (CuCl)-induced size growth from [Au4Cu4(Dppm)2(SAdm)5]+ (abbreviated as [Au4Cu4S5]+) to [Au4Cu6(Dppm)2(SAdm)4Cl3]+ (abbreviated as [Au4Cu6S4Cl3]+) (SAdmH = 1-adamantane mercaptan, Dppm = bis-(diphenylphosphino)methane) was investigated via experiments and density functional theory calculations. The [Au4Cu4S5]+ adopts a defective pentagonal bipyramid core structure with surface cavities, which could be easily filled with the sterically less hindered CuCl and CuSCy (i.e., core growth) (HSCy = cyclohexanethiol) but not the bulky CuSAdm. As long as the Au4Cu5 framework is formed, ligand exchange or size growth occurs easily. However, owing to the compact pentagonal bipyramid core structure, the latter growth mode occurs only for the surface-capped [Au4Cu6(Dppm)2(SAdm)4Cl3]+ structure (i.e., surface-capped size growth). A preliminary mechanistic study with density functional theory (DFT) calculations indicated that the overall conversion occurred via CuCl addition, core tautomerization, Cl migration, the second [CuCl] addition, and [CuCl]-[CuSR] exchange steps. And the [Au4Cu6(Dppm)2(SAdm)4Cl3]+ alloy nanocluster exhibits aggregation-induced emission (AIE) with an absolute luminescence quantum yield of 18.01% in the solid state. This work sheds light on the structural transformation of Au-Cu alloy nanoclusters induced by Cu(I) and contributes to the knowledge base of metal-ion-induced size conversion of metal nanoclusters.
Collapse
Affiliation(s)
- Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
6
|
Fan W, Yan N, Zha J, Gu W, You Q, Yang Y, Zhuang S, Wu Z. Regulating the Electronic Structure of Metal Nanoclusters by Longitudinal Single-Dithiolate Substitution. J Phys Chem Lett 2023; 14:3216-3221. [PMID: 36971502 DOI: 10.1021/acs.jpclett.3c00238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is significant but challenging to understand the property evolution of metal nanoclusters by orientated regulation of the electronic structure. Previous research has demonstrated that the optical properties of metal nanoclusters with anisotropic structures are greatly impacted by their longitudinal electronic structure. However, the manipulation of optical properties of metal nanoclusters by regulating their electronic structure through longitudinal dithiolate substitutions has not yet been reported. In this study, we first achieved the longitudinal single-dithiolate replacement of metal nanoclusters and obtained two novel nanoclusters: Au28(SPh-tBu)18(SCH2SCH2S) and Au28(SPh-tBu)18(SCH2CH2CH2S). Both experimental and theoretical results demonstrated the regulation of the electronic structure (dipole moment) in the z (longitudinal) and x directions, resulting in absorption redshift and photoluminescence (polarity) enhancement. These findings not only deepen the understanding of the property-electronic structure correlation of metal nanoclusters but also provide guidance for their subtle property tuning.
Collapse
Affiliation(s)
- Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Ying Yang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Shengli Zhuang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| |
Collapse
|
7
|
Tang L, Wang B, Wang R, Wang S. Alloying and dealloying of Au 18Cu 32 nanoclusters at precise locations via controlling the electronegativity of substituent groups on thiol ligands. NANOSCALE 2023; 15:1602-1608. [PMID: 36601973 DOI: 10.1039/d2nr05401a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The doping site of metals in an alloy nanocluster plays a key role in determining the cluster properties. Herein, we found that alloying engineering was achieved by replacing Cu at specific positions in the second layer Cu20 shell of the [Au18Cu32(SR-O)36]2- or [Au18Cu32(SR-F)36]3- (SR-O = -S-PhOMe; SR-F = -SC6H33,4F2) nanocluster with Au to generate a core-shell [Au20.31Cu29.69(SR-O)36]2- protected by mercaptan ligands with electron-donating substituents, which could be stable obtained compared with the alloyed nanocluster with electron-withdrawing substituent ligands. Moreover, dealloying engineering was accomplished by an electron-withdrawing substituent ligand exchange strategy (i.e., [Au18Cu32(SR-F)36]2-). The abovementioned reaction was analyzed using single-crystal X-ray crystallography, electrospray ionization mass spectrometry, and X-ray photoelectron spectroscopy and monitored via time-dependent ultraviolet-visible absorption spectroscopy. This reversible and precise location of alloying and dealloying provides the possibility for studying the relationship between the structure and properties of nanoclusters at the atomic level.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|