1
|
Abrishami S, Xiao H, Asadnia M, Low ZX, Razmjou A. Recent advances in the design principles of lithium selective membranes. WATER RESEARCH 2025; 283:123724. [PMID: 40373372 DOI: 10.1016/j.watres.2025.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
The growing demand for lithium in energy storage applications has intensified the need for efficient lithium extraction technologies, with membrane processes emerging as a promising approach. Among various membrane technologies, nanostructured membranes with precisely engineered channels have shown exceptional potential for selective lithium extraction due to their ability to control ion transport at the molecular level. This review provides a comprehensive analysis of the fundamental design principles governing lithium-selective membranes, with a specific focus on nanochannel-based systems. We examine the critical parameters that influence lithium selectivity, including surface charge distribution, nanochannel dimensions, morphology, and wettability, while exploring how these factors interact with external driving forces to enable selective ion transport. This work extensively analyzes recent developments in nanochannel engineering and ion transport mechanisms, providing crucial insights into optimizing membrane selectivity and performance. By critically analyzing current challenges in scaling up these technologies and identifying promising research directions, this work provides a roadmap for developing next-generation lithium-selective membranes with enhanced efficiency and selectivity.
Collapse
Affiliation(s)
- Shayan Abrishami
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Huan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
2
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
3
|
Ling Y, Yu L, Guo Z, Bian F, Wang Y, Wang X, Hou Y, Hou X. Single-Pore Nanofluidic Logic Memristor with Reconfigurable Synaptic Functions and Designable Combinations. J Am Chem Soc 2024; 146:14558-14565. [PMID: 38755097 DOI: 10.1021/jacs.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The biological neural network is a highly efficient in-memory computing system that integrates memory and logical computing functions within synapses. Moreover, reconfiguration by environmental chemical signals endows biological neural networks with dynamic multifunctions and enhanced efficiency. Nanofluidic memristors have emerged as promising candidates for mimicking synaptic functions, owing to their similarity to synapses in the underlying mechanisms of ion signaling in ion channels. However, realizing chemical signal-modulated logic functions in nanofluidic memristors, which is the basis for brain-like computing applications, remains unachieved. Here, we report a single-pore nanofluidic logic memristor with reconfigurable logic functions. Based on the different degrees of protonation and deprotonation of functional groups on the inner surface of the single pore, the modulation of the memristors and the reconfiguration of logic functions are realized. More noteworthy, this single-pore nanofluidic memristor can not only avoid the average effects in multipore but also act as a fundamental component in constructing complex neural networks through series and parallel circuits, which lays the groundwork for future artificial nanofluidic neural networks. The implementation of dynamic synaptic functions, modulation of logic gates by chemical signals, and diverse combinations in single-pore nanofluidic memristors opens up new possibilities for their applications in brain-inspired computing.
Collapse
Affiliation(s)
- Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziwen Guo
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Fazhou Bian
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Roslyakov IV, Kushnir SE, Novikov VB, Dotsenko AA, Tsymbarenko DM, Sapoletova NA, Murzina TV, Stolyarov VS, Napolskii KS. Three-Dimensional Photonic Crystals Based on Porous Anodic Aluminum Oxide. J Phys Chem Lett 2024; 15:4319-4326. [PMID: 38619331 DOI: 10.1021/acs.jpclett.4c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Photonic crystals (PCs) consisting of a periodic arrangement of holes in dielectric media have found success in light manipulation and sensing. Among them, three-dimensional (3D) PCs are in high demand due to their unique properties originating from multiple photonic band gaps (PBGs) and even full ones. Here, 3D PCs based on porous anodic aluminum oxide (AAO) were fabricated for the first time. Our approach involves prepatterning of the aluminum surface by a focused ion beam to form a hexagonal array of pore nuclei. Subsequent anodization in 1 M H3PO3 using a sine wave profile of voltage provides AAO with a defect-free in-plane porous structure and out-of-plane porosity modulation. The ability to tune the position, width, and depth of the PBGs is demonstrated. The combination of the flexibility of the proposed approach with the unique properties of AAO extends the range of practical applications of 3D PCs far beyond the current achievements.
Collapse
Affiliation(s)
- Ilya V Roslyakov
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, 119991 Moscow, Russia
| | - Sergey E Kushnir
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir B Novikov
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey A Dotsenko
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Dmitry M Tsymbarenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Nina A Sapoletova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Tatiana V Murzina
- Department of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vasily S Stolyarov
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastian, Spain
- LPEM, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Kirill S Napolskii
- Department of Materials Science, Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Kushnir SE, Devyanina NP, Roslyakov IV, Lyskov NV, Stolyarov VS, Napolskii KS. Stained Glass Effect in Anodic Aluminum Oxide Formed in Selenic Acid. J Phys Chem Lett 2024; 15:298-306. [PMID: 38166418 DOI: 10.1021/acs.jpclett.3c03287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A combination of the unique porous structure and physical and chemical properties of anodic aluminum oxide (AAO) makes it widely used in cutting-edge areas of materials science and nanotechnology. Selenic acid electrolyte provides the ability to obtain AAO with low porosity and high optical transparency and thus is promising for the preparation of AAO photonic crystals (PhCs). Here, we show the influence of crystallographic orientation of Al on the electrochemical oxidation rate in 1 M H2SeO4 as well as on the growth rate, porosity, and the effective refractive index of AAO. The cyclic anodization regime is used to prepare AAO PhCs with photonic band gaps, their wavelength positions are used to measure the AAO growth rate. At an anodization voltage of 40-45 V, the growth rate varies by up to 22.6% with crystallographic orientation of Al grains, causing the stained glass effect, which can be seen with the naked eye.
Collapse
Affiliation(s)
| | | | | | - Nikolay V Lyskov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
| | - Vasily S Stolyarov
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- LPEM, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | | |
Collapse
|
6
|
Lei X, Zhang J, Hong H, Wei J, Liu Z, Jiang L. Controllable Fabrication and Rectification of Bipolar Nanofluid Diodes in Funnel-Shaped Si 3 N 4 Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303370. [PMID: 37420321 DOI: 10.1002/smll.202303370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/09/2023] [Indexed: 07/09/2023]
Abstract
Solid-state nanopores attract widespread interest, owning to outstanding robustness, extensive material availability, as well as capability for flexible manufacturing. Bioinspired solid-state nanopores further emerge as potential nanofluidic diodes for mimicking the rectification progress of unidirectional ionic transport in biological K+ channels. However, challenges that remain in rectification are over-reliance on complicated surface modifications and limited control accuracy in size and morphology. In this study, suspended Si3 N4 films of only 100 nm thickness are used as substrate and funnel-shaped nanopores are controllably etched on that with single-nanometer precision, by focused ion beam (FIB) equipped with a flexibly programmable ion dose at any position. A small diameter 7 nm nanopore can be accurately and efficiently fabricated in only 20 ms and verified by a self-designed mathematical model. Without additional modification, funnel-shaped Si3 N4 nanopores functioned as bipolar nanofluidic diodes achieve high rectification by simply filling each side with acidic and basic solution, respectively. Main factors are finely tuned experimentally and simulatively to enhance the controllability. Moreover, nanopore arrays are efficiently prepared to further improve rectification performance, which has great potential for high-throughput practical applications such as extended release of drugs, nanofluidic logic systems, and sensing for environmental monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Xin Lei
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Jiayan Zhang
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Hao Hong
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
- Department of Microelectronics, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Jiangtao Wei
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Zewen Liu
- School of Integrated Circuits, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 101407, P. R. China
| |
Collapse
|
7
|
Peng R, Li T, Song H, Wang S, Song Y, Wang J, Xu M. In-depth understanding of boosting salinity gradient power generation by ionic diode. iScience 2023; 26:107184. [PMID: 37534140 PMCID: PMC10391965 DOI: 10.1016/j.isci.2023.107184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Ionic diodes constructed with asymmetric channel geometry and/or charge layout have shown outstanding performance in ion transport manipulation and reverse electrodialysis (RED) energy collection, but the working mechanism is still indistinct. Herein, we systematically investigated RED energy conversion of straight nanochannel-based bipolar ionic diode by coupling the Poisson-Nernst-Planck and Navier-Strokes equations. The effects of nanochannel structure, charging polarity, and symmetricity as well as properties of working fluids on the output voltage and output power were investigated. The results show that as high-concentration feeding solution is applied, the bipolar ionic diode-based RED system gives higher output voltage and output power compared to the unipolar channel RED system. Under optimal conditions, the voltage output of the bipolar channel is increased by ∼100% and the power output is increased by ∼260%. This work opens a new route for the design and optimization of high-performance salinity energy harvester as well as for water desalination.
Collapse
Affiliation(s)
- Ran Peng
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Tong Li
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Dalian Maritime University, Dalian 116026, China
| | - Hanqiong Song
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Shiyao Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Minyi Xu
- College of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026 China
- Dalian Key Lab of Marine Micro/Nano Energy and Self-Powered System, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
8
|
Li ZQ, Zhu GL, Mo RJ, Wu MY, Ding XL, Huang LQ, Wu ZQ, Xia XH. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23922-23930. [PMID: 37145874 DOI: 10.1021/acsami.3c01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The unique ion-transport properties in nanoconfined pores enable nanofluidic devices with great potential in harvesting osmotic energy. The energy conversion performance could be significantly improved by the precise regulation of the "permeability-selectivity" trade-off and the ion concentration polarization effect. Here, we take the advantage of electrodeposition technique to fabricate a Janus metal-organic framework (J-MOF) membrane that possesses rapid ion-transport capability and impeccable ion selectivity. The asymmetric structure and asymmetric surface charge distribution of the J-MOF device can suppress the ion concentration polarization effect and enhance the ion charge separation, exhibiting an improved energy harvesting performance. An output power density of 3.44 W/m2 has been achieved with the J-MOF membrane at a 1000-fold concentration gradient. This work provides a new strategy for fabricating high-performance energy-harvesting devices.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Guan-Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Public Health, Nantong University, Nantong 226019, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xin W, Ling H, Cui Y, Qian Y, Kong XY, Jiang L, Wen L. Tunable Ion Transport in Two-Dimensional Nanofluidic Channels. J Phys Chem Lett 2023; 14:627-636. [PMID: 36634054 DOI: 10.1021/acs.jpclett.2c03522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Layered two-dimensional (2D) materials with interlayer channels at the nanometer scale offer an ideal platform to control ion transport behaviors, including high-precision separation, ultrafast diffusion, and tunable permeation flux, which show great potential for energy conversion and storage, water treatment, catalysis, biosynthesis, and sensing. Recent advances in controlling the structure and functionality of 2D nanofluidic channels sustainably open doors for more revolutionary applications. In this Perspective, we first present a brief introduction to the fundamental mechanisms for ion transport in 2D nanofluidic channels and an overview of state-of-the-art assembly technologies of nanochannel membranes. We then point out new avenues for developing advanced nanofluidics, combining molecular-level cross-linking, and surface modification in nanoconfinement. Finally, we outline the potential applications of these 2D nanofluidic channel membranes and their technical challenges that need to be addressed to afford for practical applications.
Collapse
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Haoyang Ling
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yanglansen Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|