1
|
Pan Y, Xin Y, Li Y, Xu Z, Tang C, Liu X, Yin Y, Zhang J, Xu F, Li C, Mai Y. Nitrogen-Doped Carbon Cubosomes as an Efficient Electrocatalyst with High Accessibility of Internal Active Sites. ACS NANO 2023. [PMID: 38009536 DOI: 10.1021/acsnano.3c07963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Porous carbon particles (PCPs) present considerable potential for applications across a wide range of fields, particularly within the realms of energy and catalysis. The control of their overall morphologies and pore structures has remained a big challenge. Here, using metal-organic frameworks (MOFs) as the precursor and polymer cubosomes (PCs) as the template, nitrogen-doped carbon cubosomes (SP-NCs) with a single primitive bicontinuous architecture are prepared. SP-NCs inherit the high porosity of MOFs, generating a high specific surface area of 825 m2 g-1 and uniformly distributed active sites with a 5.9 at % nitrogen content. Thanks to the presence of three-dimensional continuous mesochannels that enable much higher accessibility of internal active sites over those of their porous counterparts' lack of continuous channels, SP-NCs exhibit superior electrocatalytic performance for oxygen reduction reaction with a half-wave potential of 0.87 V, situating them in the leading level of the reported carbon electrocatalysts. Serving as an air cathode catalyst of the Zn-air battery, SP-NCs exhibit excellent performance, outperforming the commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yupeng Xin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xin Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yucheng Yin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Green and High-End Utilization of Salt Lake Resources (Chinese Academy of Sciences), and Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
2
|
Liu C, Chen X, Zhang X, Li J, Wang B, Luo Z, Li J, Qian D, Liu J, Waterhouse GIN. Sodium Tartrate-Assisted Synthesis of High-Purity NiFe 2O 4 Nano-Microrods Supported by Porous Ketjenblack Carbon for Efficient Alkaline Oxygen Evolution. J Phys Chem Lett 2023:6099-6109. [PMID: 37364134 DOI: 10.1021/acs.jpclett.3c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Herein, a simple two-step synthetic method was developed for the synthesis of NiFe2O4 nano-microrods supported on Ketjenblack carbon (NiFe2O4/KB). A sodium tartrate-assisted hydrothermal method was employed for the synthesis of a NiFe-MOF/KB precursor, which was then pyrolyzed under N2 at 500 °C to yield NiFe2O4/KB. Benefiting from the presence of high-valence Ni3+ and Fe3+, high conductivity, and a large electrochemically active surface area, NiFe2O4/KB delivered outstanding OER electrocatalytic performance under alkaline conditions, including a very low overpotential of 258 mV (vs RHE) at 10 mA cm-2, a small Tafel slope of 43.01 mV dec-1, and excellent durability in 1.0 M KOH. Density functional theory calculations verified the superior alkaline OER electrocatalytic activity of NiFe2O4 to IrO2. While both catalysts possessed a similar metallic ground state, NiFe2O4 offered a lower energy barrier in the rate-determining OER step (*OOH → O2) compared to IrO2, resulting in faster OER kinetics.
Collapse
Affiliation(s)
- Canhui Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
- Yoening Tianci Mining Changsha Technology Center, Changsha 410083, P.R. China
| | - Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jie Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Bowen Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Junhua Li
- College of Chemistry and Material Science, Hengyang Normal University, Hengyang 421008, P.R. China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China
| | | |
Collapse
|
3
|
Zhou Q, Miao S, Xue T, Liu Y, Li H, Yan XH, Zou ZL, Wang BP, Lu YJ, Han FL. Nitrogen-doped porous carbon encapsulates multivalent cobalt-nickel as oxygen reduction reaction catalyst for zinc-air battery. J Colloid Interface Sci 2023; 648:511-519. [PMID: 37307607 DOI: 10.1016/j.jcis.2023.05.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
In this study, we present a bimetallic ion coexistence encapsulation strategy employing hexadecyl trimethyl ammonium bromide (CTAB) as a mediator to anchor cobalt-nickel (CoNi) bimetals in nitrogen-doped porous carbon cubic nanoboxes (CoNi@NC). The fully encapsulated and uniformly dispersed CoNi nanoparticles with the improved density of active sites help to accelerate the oxygen reduction reaction (ORR) kinetics and provide an efficient charge/mass transport environment. Zinc-air battery (ZAB) equipped CoNi@NC as cathode exhibits an open-circuit voltage of 1.45 V, a specific capacity of 870.0 mAh g-1, and a power density of 168.8 mW cm-2. Moreover, the two CoNi@NC-based ZABs in series display a stable discharge specific capacity of 783.0 mAh g-1, as well as a large peak power density of 387.9 mW cm-2. This work provides an effective way to tune the dispersion of nanoparticles to boost active sites in nitrogen-doped carbon structure, and enhance the ORR activity of bimetallic catalysts.
Collapse
Affiliation(s)
- Quan Zhou
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Song Miao
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Tong Xue
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China.
| | - Yipu Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, PR China.
| | - Hua Li
- School of Materials and Energy, Electron Microscopy Centre, Lanzhou University, Lanzhou 730000, PR China.
| | - Xiang-Hui Yan
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Zhong-Li Zou
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Bei-Ping Wang
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - You-Jun Lu
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| | - Feng-Lan Han
- National and Local Joint Engineering Research Center of Advanced Carbon Based Ceramics Preparation Technology, Collaborative Innovation Center for High Value Utilization of Industrial By-products, School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, PR China
| |
Collapse
|
4
|
Kundu A, Kuila T, Murmu NC, Samanta P, Das S. Metal-organic framework-derived advanced oxygen electrocatalysts as air-cathodes for Zn-air batteries: recent trends and future perspectives. MATERIALS HORIZONS 2023; 10:745-787. [PMID: 36594186 DOI: 10.1039/d2mh01067d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Electrochemical energy storage devices with stable performance, high power output, and energy density are urgently needed to meet the global energy demand. Among the different electrochemical energy storage devices, batteries have become the most promising energy technologies and ranked as a highly investigated research subject. Recently, metal-air batteries especially Zn-air batteries (ZABs) have attracted enormous scientific interest in the electrochemical community due to their ease of operation, sustainability, environmental friendliness, and high efficiency. The oxygen electrocatalytic reactions [oxygen reduction reaction (ORR) and oxygen evolution reaction (OER)] are the two fundamental reactions for the development of ZABs. Noble metal-based electrocatalysts are widely considered as the benchmark for oxygen electrocatalysis, but their practical application in rechargeable ZAB is hindered due to several shortcomings. Thus, to replace noble metal-based catalysts, a wide range of transition-metal-based materials and heteroatom-doped metal-free carbon materials has been extensively investigated as oxygen electrocatalysts for ZABs. Recently, metal-organic frameworks (MOFs) with unique structural flexibility and uniformly dispersed active sites have become attractive precursors for the synthesis of a large variety of advanced functional materials. Herein, we summarize the recent progress of MOF-derived oxygen electrocatalysts (MOF-derived carbon nanomaterials, MOF-derived alloys/nanoparticles, and MOF-derived single-atom electrocatalysts) for ZABs. Specifically, we highlight MOF-derived single-atom electrocatalysts owing to the wide exploration of these emerging materials in electrocatalysis. The influence of the active sites, structural/compositional design, and porosity of MOF-derived advanced materials on the oxygen electrocatalytic performances is also discussed. Finally, the existing challenges and prospects of MOF-derived electrocatalysts in ZABs are briefly highlighted.
Collapse
Affiliation(s)
- Aniruddha Kundu
- Surface Engineering and Tribology Division, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India.
| | - Tapas Kuila
- Surface Engineering and Tribology Division, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India
| | - Naresh Chandra Murmu
- Surface Engineering and Tribology Division, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India
| | - Prakas Samanta
- Surface Engineering and Tribology Division, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad-201002, Uttar Pradesh, India
| | - Srijib Das
- Surface Engineering and Tribology Division, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur-713209, West Bengal, India.
| |
Collapse
|
5
|
Chen X, Guo J, Liu J, Luo Z, Zhang X, Qian D, Sun-Waterhouse D, Waterhouse GIN. Nanostructure Engineering and Electronic Modulation of a PtNi Alloy Catalyst for Enhanced Oxygen Reduction Electrocatalysis in Zinc-Air Batteries. J Phys Chem Lett 2023; 14:1740-1747. [PMID: 36758156 DOI: 10.1021/acs.jpclett.2c03835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PtNi nanoalloys have demonstrated electrocatalysis superior to that of benchmark Pt/C catalysts for the oxygen reduction reaction (ORR), yet the underlying mechanisms remain underexplored. Herein, a PtNi/NC catalyst comprising PtNi nanoparticles (∼5.2 nm in size) dispersed on N-doped carbon frameworks was prepared using a simple pyrolysis strategy. Benefiting from the individual components and a hierarchical structure, the PtNi/NC catalyst exhibited outstanding ORR activity and stability (E1/2 = 0.82 V vs RHE and 8 mV negative shift after 20000 cycles), outperforming a commercial 20 wt % Pt/C catalyst (E1/2 = 0.81 V and 32 mV negative shift). A prototype zinc-air battery constructed using PtNi/NC as the air electrode catalyst achieved highly enhanced electrochemical performance, outperforming a battery constructed using Pt/C as the ORR catalyst. Density functional theory calculations revealed that the improved ORR activity of the PtNi nanoalloys originated from charge redistribution with a suitable metal d-band center to promote the formation of the ORR intermediates.
Collapse
Affiliation(s)
- Xiangxiong Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- Yoening Tianci Mining Changsha Technology Center, Changsha 410083, China
| | - Jiangnan Guo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jinlong Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ziyu Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xinxin Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Dong Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | | | - Geoffrey I N Waterhouse
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| |
Collapse
|