1
|
Qian C, Liu Y, Meng W, Jiang Y, Wang S, Wang L. Modeling Infrared Spectroscopy of Nucleic Acids: Integrating Vibrational Non-Condon Effects with Machine Learning Schemes. J Chem Theory Comput 2024; 20:10080-10094. [PMID: 39526974 PMCID: PMC12013862 DOI: 10.1021/acs.jctc.4c01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vibrational non-Condon effects, which describe how molecular vibrational transitions are influenced by a system's rotational and translational degrees of freedom, are often overlooked in spectroscopy studies of biological macromolecules. In this work, we explore these effects in the modeling of infrared (IR) spectra for nucleic acids in the 1600-1800 cm-1 region. Through electronic structure calculations, we reveal that the transition dipole moments of the C═O and C═C stretching modes in nucleobases are highly sensitive to solvation, hydrogen bonding, and base stacking conditions. To incorporate vibrational non-Condon effects into spectroscopy modeling, we use local electric fields on chromophore atoms as collective coordinates and leverage experimental IR spectra of oligonucleotides to develop deep neural network-based transition dipole strength (TDS) maps for the C═O and C═C chromophores. By integrating molecular dynamics simulations with a mixed quantum/classical treatment of the line shape theory, we apply the TDS maps to calculate the IR spectra of nucleoside 5'-monophosphates, DNA double helices and yeast phenylalanine tRNA. The resulting theoretical spectra show quantitative agreement with experimental measurements. While the predictions for nucleoside 5'-monophosphates are comparable to baseline performance, the TDS maps yield significantly improved IR peak intensities across all oligonucleotides. This theoretical framework effectively bridges atomistic simulations and IR spectroscopy experiments, offering molecular insights into how vibrational non-Condon effects impact the observed spectral features.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yuanhao Liu
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Wenting Meng
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yaoyukun Jiang
- Department of Chemistry and California Institute for Quantitative Biosciences, University of California-Berkeley, Berkeley, California 94720, United States
| | - Sijian Wang
- Department of Statistics, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Lu Wang
- Department of Chemistry and Chemical Biology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
2
|
Peng HC, Mohan S, Huq MT, Bull JA, Michaud T, Piercy TC, Hilber S, Wettasinghe AP, Slinker JD, Kreutz C, Stelling AL. Isotope-Edited Variable Temperature Infrared Spectroscopy for Measuring Transition Temperatures of Single A-T Watson-Crick Base Pairs in DNA Duplexes. Anal Chem 2024; 96:8868-8874. [PMID: 38775341 DOI: 10.1021/acs.analchem.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Experimental methods to determine transition temperatures for individual base pair melting events in DNA duplexes are lacking despite intense interest in these thermodynamic parameters. Here, we determine the dimensions of the thymine (T) C2═O stretching vibration when it is within the DNA duplex via isotopic substitutions at other atomic positions in the structure. First, we determined that this stretching state was localized enough to specific atoms in the molecule to make submolecular scale measurements of local structure and stability in high molecular weight complexes. Next, we develop a new isotope-edited variable temperature infrared method to measure melting transitions at various locations in a DNA structure. As an initial test of this "sub-molecular scale thermometer", we applied our T13C2 difference infrared signal to measure location-dependent melting temperatures (TmL) in a DNA duplex via variable temperature attenuated total reflectance Fourier transform infrared (VT-ATR-FTIR) spectroscopy. We report that the TmL of a single Watson-Crick A-T base pair near the end of an A-T rich sequence (poly T) is ∼34.9 ± 0.7°C. This is slightly lower than the TmL of a single base pair near the middle position of the poly T sequence (TmL ∼35.6±0.2°C). In addition, we also report that the TmL of a single Watson-Crick A-T base pair near the end of a 50% G-C sequence (12-mer) is ∼52.5 ± 0.3°C, which is slightly lower than the global melting Tm of the 12-mer sequence (TmL ∼54.0±0.9°C). Our results provide direct physical evidence for end fraying in DNA sequences with our novel spectroscopic methods.
Collapse
Affiliation(s)
- Hao-Che Peng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shrijaa Mohan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Muhammad T Huq
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Julie A Bull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Troy Michaud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Turner C Piercy
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Ashan P Wettasinghe
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jason D Slinker
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck 6020, Austria
| | - Allison L Stelling
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
3
|
Bhai L, Thomas JK, Conroy DW, Xu Y, Al-Hashimi HM, Jaroniec CP. Hydrogen bonding in duplex DNA probed by DNP enhanced solid-state NMR N-H bond length measurements. Front Mol Biosci 2023; 10:1286172. [PMID: 38111464 PMCID: PMC10726973 DOI: 10.3389/fmolb.2023.1286172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 12/20/2023] Open
Abstract
Numerous biological processes and mechanisms depend on details of base pairing and hydrogen bonding in DNA. Hydrogen bonds are challenging to quantify by X-ray crystallography and cryo-EM due to difficulty of visualizing hydrogen atom locations but can be probed with site specificity by NMR spectroscopy in solution and the solid state with the latter particularly suited to large, slowly tumbling DNA complexes. Recently, we showed that low-temperature dynamic nuclear polarization (DNP) enhanced solid-state NMR is a valuable tool for distinguishing Hoogsteen base pairs (bps) from canonical Watson-Crick bps in various DNA systems under native-like conditions. Here, using a model 12-mer DNA duplex containing two central adenine-thymine (A-T) bps in either Watson-Crick or Hoogsteen confirmation, we demonstrate DNP solid-state NMR measurements of thymine N3-H3 bond lengths, which are sensitive to details of N-H···N hydrogen bonding and permit hydrogen bonds for the two bp conformers to be systematically compared within the same DNA sequence context. For this DNA duplex, effectively identical TN3-H3 bond lengths of 1.055 ± 0.011 Å and 1.060 ± 0.011 Å were found for Watson-Crick A-T and Hoogsteen A (syn)-T base pairs, respectively, relative to a reference amide bond length of 1.015 ± 0.010 Å determined for N-acetyl-valine under comparable experimental conditions. Considering that prior quantum chemical calculations which account for zero-point motions predict a somewhat longer effective peptide N-H bond length of 1.041 Å, in agreement with solution and solid-state NMR studies of peptides and proteins at ambient temperature, to facilitate direct comparisons with these earlier studies TN3-H3 bond lengths for the DNA samples can be readily scaled appropriately to yield 1.083 Å and 1.087 Å for Watson-Crick A-T and Hoogsteen A (syn)-T bps, respectively, relative to the 1.041 Å reference peptide N-H bond length. Remarkably, in the context of the model DNA duplex, these results indicate that there are no significant differences in N-H···N A-T hydrogen bonds between Watson-Crick and Hoogsteen bp conformers. More generally, high precision measurements of N-H bond lengths by low-temperature DNP solid-state NMR based methods are expected to facilitate detailed comparative analysis of hydrogen bonding for a range of DNA complexes and base pairing environments.
Collapse
Affiliation(s)
- Lakshmi Bhai
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Justin K. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Daniel W. Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Yu Xu
- Department of Chemistry, Duke University, Durham, NC, United States
| | - Hashim M. Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, United States
| | - Christopher P. Jaroniec
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|