1
|
Steinrücken E, Diehl L, Wissel T, Buntkowsky G, Varol HS, Andrieu-Brunsen A, Vogel M. Effects of amino-acid functionalization and pH value on temperature-dependent water dynamics in silica confinement. J Chem Phys 2025; 162:084702. [PMID: 39992000 DOI: 10.1063/5.0245872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 02/25/2025] Open
Abstract
2H nuclear magnetic resonance (NMR) field-cycling relaxometry and broadband dielectric spectroscopy (BDS) studies show that water dynamics in silica pores with similar diameters (∼6 nm) strongly depend on the functionalization of the inner surfaces. In all studied confinements, we observe two prominent changes in the temperature dependence of water reorientation. Specifically, the activation energy of Ea ∼ 0.3 eV in the fully liquid state more than triples to Ea ∼ 1.0 eV upon partial crystallization at Tm ∼ 258 K. Furthermore, in the partially crystallized state, the liquid fraction shows a dynamical crossover at ∼185 K, where the common low-temperature behavior of confined water with Ea = 0.4-0.5 eV is established. However, the correlation times of water reorientation are up to two orders of magnitude longer in amino-acid functionalized silica pores than in pristine ones. Comparing the results for different functional groups, NMR and BDS consistently show that the slowdown is strongest for basic lysine followed by neutral alanine and, finally, acidic glutamic acid. Based on this order, one may speculate that the changed dynamics are a consequence of different pH values of water in confinements with different functional groups. Although pH measurements confirm that the pH value strongly depends on the amino-acid functionalization, this speculation must be rejected due to the observation that water with very different pH values does not show diverse reorientation dynamics when enclosed in identical pores.
Collapse
Affiliation(s)
- Elisa Steinrücken
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Lukas Diehl
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - H Samet Varol
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
- Dipartimento di Chimica "Giacomo Ciamician," Università di Bologna, 40126 Bologna, Italy
| | - Annette Andrieu-Brunsen
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
2
|
Beaton AA, Guinness A, Franck JM. Rapidly Screening the Correlation between the Rotational Mobility and the Hydrogen Bonding Strength of Confined Water. J Phys Chem B 2024; 128:10749-10763. [PMID: 39439388 PMCID: PMC11533181 DOI: 10.1021/acs.jpcb.4c05397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024]
Abstract
Automated Deuterium Relaxation-Ordered SpectroscopY in solution (ADROSYS), an automated two-dimensional deuterium NMR methodology, discriminates between D2O populations (as well as deuterium-labeled alcohol groups) whose properties differ as a result of being confined inside nanoscale volumes. In this contribution, a proof-of-principle demonstration on reverse micelles (RMs) yields the insight that as the length scale of the confinement decreases from several nanometers down to less than a nanometer, the position of the signal peak migrates through the two-dimensional (2D) spectrum, tracing out a distinctive path in the 2D space (of relaxation time vs chemical shift). The signals typically follow a relatively gentle linear path for water confined on the scale of several nanometers, before curving once the surfactants confine the water molecules to length scales smaller than 1-2 nm. The qualitative shape of this path, especially in the regime of strong confinement, can change with different choices of surfactants, i.e., a different choice of chemistry at the edges of the confining environment. An important facet of this research was to demonstrate the relatively wide applicability of these techniques by showing that both: (1) Standard modern NMR instrumentation is capable of deploying an automated measurement, even though the choice of a deuterium nucleus is nonstandard and frequently requires companion proton spectra in order to reference the chemical shifts; and (2) well-established (though underutilized) modern techniques can process the resulting signal even though it involves the somewhat unusual combination of chemical shifts along one dimension and a distribution of relaxation times along another dimension. In addition to demonstrating that this technique can be deployed across many samples of interest, detailed facts pertaining to the broadening or shifting of resulting signals upon inclusion of various guest molecules are also discussed.
Collapse
Affiliation(s)
- Alec A. Beaton
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| | - Alexandria Guinness
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| | - John M. Franck
- Department of Chemistry, Syracuse University, Syracuse, New York 13210, United States
| |
Collapse
|
3
|
Melillo JH, Cangialosi D, Di Lisio V, Steinrücken E, Vogel M, Cerveny S. Complexity of confined water vitrification and its glass transition temperature. Proc Natl Acad Sci U S A 2024; 121:e2407030121. [PMID: 39356669 PMCID: PMC11474062 DOI: 10.1073/pnas.2407030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/25/2024] [Indexed: 10/04/2024] Open
Abstract
The ability of vitrification when crossing the glass transition temperature (Tg) of confined and bulk water is crucial for myriad phenomena in diverse fields, ranging from the cryopreservation of organs and food to the development of cryoenzymatic reactions, frost damage to buildings, and atmospheric water. However, determining water's Tg remains a major challenge. Here, we elucidate the glass transition of water by analyzing the calorimetric behavior of nano-confined water across various pore topologies (diameters: 0.3 to 2.5 nm). Our approach involves subjecting confined water to annealing protocols to identify the temperature and time evolution of nonequilibrium glass kinetics. Furthermore, we complement this calorimetric approach with the dynamics of confined water, as seen by broadband dielectric spectroscopy and linear calorimetric measurements, including the fast scanning technique. This study demonstrated that confined water undergoes a glass transition in the temperature range of 170 to 200 K, depending on the confinement size and the interaction with the confinement walls. Moreover, we also show that the thermal event observed at ~136 K must be interpreted as an annealing prepeak, also referred to as the "shadow glass transition." Calorimetric measurements also allow the detection of a specific heat step above 200 K, which is insensitive to annealing and, thereby, interpreted as a true thermodynamic transition. Finally, by connecting our results to bulk water behavior, we offer a comprehensive understanding of confined water vitrification with potential implications for numerous applications.
Collapse
Affiliation(s)
- Jorge H. Melillo
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Daniele Cangialosi
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Valerio Di Lisio
- Donostia International Physics Center, San Sebastian20018, Spain
| | - Elisa Steinrücken
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Darmstadt64289, Germany
| | - Michael Vogel
- Institut für Physik kondensierter Materie, Technische Universität Darmstadt, Darmstadt64289, Germany
| | - Silvina Cerveny
- Centro de Física de Materiales (Consejo Superior de Investigaciones Científicas (CSIC) - Universidad del País Vasco (UPV/EHU))–Material Physics Centre, San Sebastian20018, Spain
- Donostia International Physics Center, San Sebastian20018, Spain
| |
Collapse
|
4
|
Steinrücken E, Weigler M, Kloth S, Vogel M. Complex dynamics of partially freezable confined water revealed by combined experimental and computational studies. J Chem Phys 2024; 161:014706. [PMID: 38949591 DOI: 10.1063/5.0215451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
We investigate water dynamics in mesoporous silica across partial crystallization by combining broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR), and molecular dynamics simulations (MDS). Exploiting the fact that not only BDS but also NMR field-cycling relaxometry and stimulated-echo experiments provide access to dynamical susceptibilities in broad frequency and temperature ranges, we study both the fully liquid state above the melting point Tm and the dynamics of coexisting water and ice phases below this temperature. It is found that partial crystallization leads to a change in the temperature dependence of rotational correlation times τ, which occurs in addition to previously reported dynamical crossovers of confined water and depends on the pore diameter. Furthermore, we observe that dynamical susceptibilities of water are strongly asymmetric in the fully liquid state, whereas they are much broader and nearly symmetric in the partially frozen state. Finally, water in the nonfreezable interfacial layer below Tm does not exhibit a much debated dynamical crossover at ∼220 K. We argue that its dynamics is governed by a static energy landscape, which results from the interaction with the bordering silica and ice surfaces and features a Gaussian-like barrier distribution. Consistently, our MDS analysis of the motional mechanism reveals a hopping motion of water in thin interfacial layers. The rotational correlation times of the confined ice phases follow Arrhenius laws. While the values of τ depend on the pore diameter, freezable water in various types of confinements and mixtures shows similar activation energies of Ea ≈ 0.43 eV.
Collapse
Affiliation(s)
- Elisa Steinrücken
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Max Weigler
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Sebastian Kloth
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| |
Collapse
|
5
|
Haro Mares NB, Döller SC, Wissel T, Hoffmann M, Vogel M, Buntkowsky G. Structures and Dynamics of Complex Guest Molecules in Confinement, Revealed by Solid-State NMR, Molecular Dynamics, and Calorimetry. Molecules 2024; 29:1669. [PMID: 38611950 PMCID: PMC11013127 DOI: 10.3390/molecules29071669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
This review gives an overview of current trends in the investigation of confined molecules such as water, small and higher alcohols, carbonic acids, ethylene glycol, and non-ionic surfactants, such as polyethylene glycol or Triton-X, as guest molecules in neat and functionalized mesoporous silica materials employing solid-state NMR spectroscopy, supported by calorimetry and molecular dynamics simulations. The combination of steric interactions, hydrogen bonds, and hydrophobic and hydrophilic interactions results in a fascinating phase behavior in the confinement. Combining solid-state NMR and relaxometry, DNP hyperpolarization, molecular dynamics simulations, and general physicochemical techniques, it is possible to monitor these confined molecules and gain deep insights into this phase behavior and the underlying molecular arrangements. In many cases, the competition between hydrogen bonding and electrostatic interactions between polar and non-polar moieties of the guests and the host leads to the formation of ordered structures, despite the cramped surroundings inside the pores.
Collapse
Affiliation(s)
- Nadia B. Haro Mares
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Sonja C. Döller
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Till Wissel
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| | - Markus Hoffmann
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, NY 14420, USA
| | - Michael Vogel
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstr. 6, D-64289 Darmstadt, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Peter-Grünberg-Str. 8, D-64287 Darmstadt, Germany; (N.B.H.M.); (S.C.D.); (T.W.)
| |
Collapse
|
6
|
Kumar Murali A, Paluch M, Casalini R, Lange A, Taubert A, Wojnarowska Z. Dynamics of Water Clusters Confined in Ionic Liquid at an Elevated Pressure. J Phys Chem Lett 2024; 15:3376-3382. [PMID: 38498994 PMCID: PMC10983063 DOI: 10.1021/acs.jpclett.4c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Over the years, numerous experimental and theoretical efforts have been dedicated to investigating the mysteries of water and determining its new unexplored physical properties. Despite this, high-pressure studies of water and aqueous mixtures close to the glass transition still represent an unknown area of research. Herein, we address a fundamental issue: the validity of the density scaling concept for fast water dynamics. For this purpose, we performed ambient and high-pressure dielectric measurements of a supercooled equimolar aqueous mixture of an acidic ionic liquid. All isothermal and isobaric relaxation data describing the time scale of charge transport (τσ) and fast dynamics within the water clusters (τν) reveal visual evidence of a liquid-glass transition. Furthermore, both relaxation processes satisfy the ργ/T scaling concept with a single exponent γ = 0.58. Thus, the scaling exponent is a state-point-independent parameter for the dynamics of water clusters confined in ionic liquid investigated in the pressure range up to 300 MPa.
Collapse
Affiliation(s)
- Amith Kumar Murali
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Marian Paluch
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Riccardo Casalini
- Chemistry
Division, Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington, D.C. 20375, United States
| | - Alyna Lange
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam-Golm, Germany
| | - Andreas Taubert
- Institute
of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14469 Potsdam-Golm, Germany
| | - Zaneta Wojnarowska
- Institute
of Physics, University of Silesia in Katowice, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|