1
|
Hickson KM, Loison JC. Kinetic Study of the Reactions of Ground State Atomic Carbon and Oxygen with Nitrogen Dioxide over the 50-296 K Temperature Range. J Phys Chem A 2024; 128:10598-10608. [PMID: 39589326 DOI: 10.1021/acs.jpca.4c06193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The kinetics of the reactions of nitrogen dioxide, NO2, with atomic oxygen and atomic carbon in their ground triplet states (3P) have been studied at room temperature and below using a supersonic flow (Laval nozzle) reactor. O(3P) and C(3P) atoms (hereafter O and C respectively) were created in situ by the pulsed laser photolysis of the precursor molecules NO2 at 355 nm and CBr4 at 266 nm, respectively. While the progress of the O + NO2 reaction was followed by detecting O atoms by a chemiluminescent tracer method, progress of the C + NO2 reaction was followed by detecting C atoms directly by vacuum ultraviolet laser-induced fluorescence at 116 nm. The measured rate constants for the O + NO2 reaction are found to be in excellent agreement with earlier work at higher temperatures and extend the available kinetic data for this process down to 50 K. The present work represents the first kinetics study of the C + NO2 reaction. Although both reactions display rate constants that increase as the temperature falls, a more substantial rate increase is observed for the O + NO2 reaction. The effects of these reactions on the simulated abundances of interstellar NO2 and related compounds were tested using a gas-grain model of the dense interstellar medium, employing expressions for the rate constants of the form, k(T) = α(T/300)β, with α = 1 × 10-11 cm3 s-1 and β = -0.65 for the O + NO2 reaction and α = 2 × 10-10 cm3 s-1 and β = -0.11 for the C + NO2 reaction. Although these simulations predict that gas-phase NO2 abundances are low in dense interstellar clouds, NO2 abundances on interstellar dust grains are predicted to reach reasonably high levels, indicating the potential for detection of this species in warmer regions.
Collapse
Affiliation(s)
- Kevin M Hickson
- ISM, UMR 5255, CNRS, Bordeaux INP, Université de Bordeaux, F-33400 Talence, France
| | | |
Collapse
|
2
|
Bridge O, Lazzaroni P, Martinazzo R, Rossi M, Althorpe SC, Litman Y. Quantum rates in dissipative systems with spatially varying friction. J Chem Phys 2024; 161:024110. [PMID: 38984959 DOI: 10.1063/5.0216823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024] Open
Abstract
We investigate whether making the friction spatially dependent on the reaction coordinate introduces quantum effects into the thermal reaction rates for dissipative reactions. Quantum rates are calculated using the numerically exact multi-configuration time-dependent Hartree method, as well as the approximate ring-polymer molecular dynamics (RPMD), ring-polymer instanton methods, and classical molecular dynamics. By conducting simulations across a wide range of temperatures and friction strengths, we can identify the various regimes that govern the reactive dynamics. At high temperatures, in addition to the spatial-diffusion and energy-diffusion regimes predicted by Kramer's rate theory, a (coherent) tunneling-dominated regime is identified at low friction. At low temperatures, incoherent tunneling dominates most of Kramer's curve, except at very low friction, when coherent tunneling becomes dominant. Unlike in classical mechanics, the bath's influence changes the equilibrium time-independent properties of the system, leading to a complex interplay between spatially dependent friction and nuclear quantum effects even at high temperatures. More specifically, a realistic friction profile can lead to an increase (or decrease) of the quantum (classical) rates with friction within the spatial-diffusion regime, showing that classical and quantum rates display qualitatively different behaviors. Except at very low frictions, we find that RPMD captures most of the quantum effects in the thermal reaction rates.
Collapse
Affiliation(s)
- Oliver Bridge
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Paolo Lazzaroni
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Rocco Martinazzo
- Department of Chemistry, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Mariana Rossi
- MPI for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Stuart C Althorpe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yair Litman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Jiang W, Chen Y, Li Y. Reactions dynamics for X + H2 insertion reactions (X = C(1D), N(2D), O(1D), S(1D)) with Cayley propagator ring-polymer molecular dynamics. J Chem Phys 2024; 160:234107. [PMID: 38899683 DOI: 10.1063/5.0209143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
In this work, rate coefficients of four prototypical insertion reactions, X + H2 → H + XH (X = C(1D), N(2D), O(1D), S(1D)), and associated isotope reactions are calculated based on ring polymer molecular dynamics (RPMD) with Cayley propagator (Cayley-RPMD). The associated kinetic isotope effects are systematically studied too. The Cayley propagator used in this work increases the stability of numerical integration in RPMD calculations and also supports a larger evolution time interval, allowing us to reach both high accuracy and efficiency. So, our results do not only provide chemical kinetic data for the title reactions in an extended temperature range but also consist of experimental results, standard RPMD, and other theoretical methods. The results in this work also reflect that Cayley-RPMD has strong consistency and high reliability in its investigations of chemical dynamics for insertion reactions.
Collapse
Affiliation(s)
- Wenbin Jiang
- Department of Physics, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Yuhao Chen
- Department of Physics, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Yongle Li
- Department of Physics, International Center of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
- Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Murakami T, Ibuki S, Hashimoto Y, Kikuma Y, Takayanagi T. Dynamics study of the post-transition-state-bifurcation process of the (HCOOH)H + → CO + H 3O +/HCO + + H 2O dissociation: application of machine-learning techniques. Phys Chem Chem Phys 2023; 25:14016-14027. [PMID: 37161528 DOI: 10.1039/d3cp00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The process of protonated formic acid dissociating from the transition state was studied using ring-polymer molecular dynamics (RPMD), classical MD, and quasi-classical trajectory (QCT) simulations. Temperature had a strong influence on the branching fractions for the HCO+ + H2O and CO + H3O+ dissociation channels. The RPMD and classical MD simulations showed similar behavior, but the QCT dynamics were significantly different owing to the excess energies in the quasi-classical trajectories. Machine-learning analysis identified several key features in the phase information of the vibrational motions at the transition state. We found that the initial configuration and momentum of a hydrogen atom connected to a carbon atom and the shrinking coordinate of the CO bond at the transition state play a role in the dynamics of HCO+ + H2O production.
Collapse
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - Shunichi Ibuki
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Yu Hashimoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Yuya Kikuma
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
5
|
Murakami T, Iida R, Hashimoto Y, Takahashi Y, Takahashi S, Takayanagi T. Ring-Polymer Molecular Dynamics and Kinetics for the H – + C 2H 2 → H 2 + C 2H – Reaction Using the Full-Dimensional Potential Energy Surface. J Phys Chem A 2022; 126:9244-9258. [DOI: 10.1021/acs.jpca.2c05851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tatsuhiro Murakami
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
- Department of Materials & Life Sciences, Faculty of Science & Technology, Sophia University, 7-1 Kioicho, Chiyoda-ku, Tokyo102-8554, Japan
| | - Ryusei Iida
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
| | - Yu Hashimoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
| | - Yukinobu Takahashi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
| | - Soma Takahashi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama City, Saitama338-8570, Japan
| |
Collapse
|
6
|
Hickson KM, Loison JC. Kinetic Study of the Gas-Phase O( 1D) + CH 3OH and O( 1D) + CH 3CN Reactions: Low-Temperature Rate Constants and Atomic Hydrogen Product Yields. J Phys Chem A 2022; 126:3903-3913. [PMID: 35687018 DOI: 10.1021/acs.jpca.2c01946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomic oxygen in its first excited singlet state, O(1D), is an important species in the photochemistry of several planetary atmospheres and has been predicted to be a potentially important reactive species on interstellar ices. Here, we report the results of a kinetic study of the reactions of O(1D) with methanol, CH3OH, and acetonitrile, CH3CN, over the 50-296 K temperature range. A continuous supersonic flow reactor is used to attain these low temperatures coupled with pulsed laser photolysis and pulsed laser-induced fluorescence to generate and monitor O(1D) atoms, respectively. Secondary experiments examining the atomic hydrogen product channels of these reactions are also performed, through laser-induced fluorescence measurements of H(2S) atom formation. On the kinetic side, the rate constants for these reactions are seen to be large (>2 × 10-10 cm3 s-1) and consistent with barrierless reactions, although they display contrasting dependences as a function of temperature. On the product formation side, both reactions are seen to yield non-negligible quantities of atomic hydrogen. For the O(1D) + CH3OH reaction, the derived yields are in good agreement with the conclusions of previous experimental and theoretical works. For the O(1D) + CH3CN reaction, whose H-atom formation channels had not previously been investigated, electronic structure calculations of several new product formation channels are performed to explain the observed H-atom yields. These calculations demonstrate the barrierless and exothermic nature of the relevant exit channels, confirming that atomic hydrogen is also an important product of the O(1D) + CH3CN reaction.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | |
Collapse
|
7
|
Hickson KM, Loison JC, Larregaray P, Bonnet L, Wakelam V. An Experimental and Theoretical Investigation of the Gas-Phase C( 3P) + N 2O Reaction. Low Temperature Rate Constants and Astrochemical Implications. J Phys Chem A 2022; 126:940-950. [PMID: 35113561 DOI: 10.1021/acs.jpca.1c10112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction between atomic carbon in its ground electronic state, C(3P), and nitrous oxide, N2O, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50-296 K range using a continuous supersonic flow reactor. C(3P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.8 nm. Additional measurements allowing the major product channels to be elucidated were also performed. On the theoretical side, statistical rate theory was used to calculate low temperature rate constants. These calculations employed the results of new electronic structure calculations of the 3A″ potential energy surface of CNNO and provided a basis to extrapolate the measured rate constants to lower temperatures and pressures. The rate constant was found to increase monotonically as the temperature falls (kC(3P)+N2O (296 K) = (3.4 ± 0.3) × 10-11 cm3 s-1), reaching a value of kC(3P)+N2O (50 K) = (7.9 ± 0.8) × 10-11 cm3 s-1 at 50 K. As current astrochemical models do not include the C + N2O reaction, we tested the influence of this process on interstellar N2O and other related species using a gas-grain model of dense interstellar clouds. These simulations predict that N2O abundances decrease significantly at intermediate times (103 - 105 years) when gas-phase C(3P) abundances are high.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | | - Pascal Larregaray
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | - Laurent Bonnet
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33400 Talence, France
| | | |
Collapse
|
8
|
Saito K, Hashimoto Y, Takayanagi T. Ring-Polymer Molecular Dynamics Calculations of Thermal Rate Coefficients and Branching Ratios for the Interstellar H 3+ + CO → H 2 + HCO +/HOC + Reaction and Its Deuterated Analogue. J Phys Chem A 2021; 125:10750-10756. [PMID: 34918514 DOI: 10.1021/acs.jpca.1c09160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The reaction between H3+ and CO is important in understanding the H3+ destruction mechanism in the interstellar medium. In this work, thermal rate coefficients for the H3+ + CO and D3+ + CO reactions are calculated using ring-polymer molecular dynamics (RPMD) on a high-level machine-learning potential energy surface. The RPMD results agree well with the classical molecular dynamics results, where nuclear quantum effects are completely ignored, whereas the agreement between the RPMD results and the previous quasi-classical trajectory is good only at low temperatures. The calculated [HCO+]/[HOC+] product branching ratios decrease as the temperature increases, and the product branching is exclusively determined by the initial collisional orientation, which governs the formation of an ion-dipole complex, H3+···CO or H3+···OC, that dissociates into H2 + HCO+ or H2 + HOC+, respectively, via a direct mechanism. However, the contribution of the indirect mechanism via the rearrangement between H3+···CO and H3+···OC increases as the temperature increases, although its absolute fraction is small.
Collapse
Affiliation(s)
- Kohei Saito
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Yu Hashimoto
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Toshiyuki Takayanagi
- Department of Chemistry, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
9
|
Cao J, Wu Y, Bian W. Ring polymer molecular dynamics of the C(1D)+H2 reaction on the most recent potential energy surfaces. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Hickson KM, Bhowmick S, Suleimanov YV, Brandão J, Coelho DV. Experimental and theoretical studies of the gas-phase reactions of O( 1D) with H 2O and D 2O at low temperature. Phys Chem Chem Phys 2021; 23:25797-25806. [PMID: 34761769 DOI: 10.1039/d1cp04614d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the results of an experimental and theoretical study of the gas-phase reactions between O(1D) and H2O and O(1D) and D2O at room temperature and below. On the experimental side, the kinetics of these reactions have been investigated over the 50-127 K range using a continuous flow Laval nozzle apparatus, coupled with pulsed laser photolysis and pulsed laser induced fluorescence for the production and detection of O(1D) atoms respectively. Experiments were also performed at 296 K in the absence of a Laval nozzle. On the theoretical side, the existing full-dimensional ground X 1A potential energy surface for the H2O2 system involved in this process has been reinvestigated and enhanced to provide a better description of the barrierless H-atom abstraction pathway. Based on this enhanced potential energy surface, quasiclassical trajectory calculations and ring polymer molecular dynamics simulations have been performed to obtain low temperature rate constants. The measured and calculated rate constants display similar behaviour above 100 K, showing little or no variation as a function of temperature. Below 100 K, the experimental rate constants increase dramatically, in contrast to the essentially temperature independent theoretical values. The possible origins of the divergence between experiment and theory at low temperatures are discussed.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France. .,CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.,Climate & Atmosphere Research Centre, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus
| | - João Brandão
- Departamento de Química e Farmácia - FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Daniela V Coelho
- Departamento de Química e Farmácia - FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
11
|
Hickson KM, Larrégaray P, Bonnet L, González-Lezana T. The kinetics of X + H2 reactions (X = C(1D), N(2D), O(1D), S(1D)) at low temperature: recent combined experimental and theoretical investigations. INT REV PHYS CHEM 2021. [DOI: 10.1080/0144235x.2021.1976927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Pascal Larrégaray
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Laurent Bonnet
- Université de Bordeaux, Institut des Sciences Moléculaires, Talence, France
- CNRS, Institut des Sciences Moléculaires, Talence, France
| | - Tomás González-Lezana
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas IFF-CSIC, Madrid, Spain
| |
Collapse
|
12
|
Gamallo P, González M, Petrongolo C. Quantum Dynamics of Nonadiabatic Renner-Teller Effects in Atom + Diatom Collisions. J Phys Chem A 2021; 125:6637-6652. [PMID: 34319740 DOI: 10.1021/acs.jpca.1c04654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We review the quantum nonadiabatic dynamics of atom + diatom collisions due to the Renner-Teller (RT) effect, i.e., to the Hamiltonian operators that contain the total spinless electronic angular momentum L̂. As is well-known, this rovibronic effect is large near collinear geometries when at least one of the interacting states is doubly degenerate. In general, this occurs in insertion reactions and at short-range, where the potential wells exhibit deep minima and support metastable complexes. Initial-state-resolved reaction probabilities, integral cross sections, and thermal rate constants are calculated via the real wavepacket method, solving the equation of motion with an approximated or with an exact spinless RT Hamiltonian. We present the dynamics of 10 single-channel or multichannel reactions showing how RT effects depend on the product channels and comparing with the Born-Oppenheimer (BO) approximation or coexisting conical-intersection (CI) interactions. RT effects not only can significantly modify the adiabatic dynamics or correct purely CI results, but also they can be very important in opening collision channels which are closed at the BO or CI level, as in electronic-quenching reactions. In the OH(A2Σ+) + Kr electronic quenching, where both nonadiabatic effects (CI and RT) coexist, they are in competition because CI dominates the reactivity but RT couplings reduce the large CI cross section and open a CI-forbidden evolution toward products, so that CI + RT quantum results are in good agreement with experimental or semiclassical findings. The different roles of these couplings are due to the unlike nuclear geometries where they are large: rather far from or near to linearity for CI or RT, respectively. The OH(A2Σ+) + Kr electronic quenching was investigated with the exact RT Hamiltonian, validating the approximated one, which was employed for all other collisions.
Collapse
Affiliation(s)
- Pablo Gamallo
- Departament de Ciència dels Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Miguel González
- Departament de Ciència dels Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Carlo Petrongolo
- Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
13
|
Novikov IS, Suleimanov YV, Shapeev AV. Assessing parameters for ring polymer molecular dynamics simulations at low temperatures: DH + H chemical reaction. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Cao J, Wu Y, Ma H, Shen Z, Bian W. Dynamics and kinetics of the Si( 1D) + H 2/D 2 reactions on a new global ab initio potential energy surface. Phys Chem Chem Phys 2021; 23:6141-6153. [PMID: 33684184 DOI: 10.1039/d0cp05540a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent studies on the exothermic complex-forming reactions have improved our understanding of complex-forming reactions greatly, however, so far a similar level of study on endothermic ones has been rather limited. In this work, the endothermic complex-forming reaction Si(1D) + H2 → SiH + H and its deuterated isotopic variant are investigated by quantum dynamics (QD) and ring polymer molecular dynamics (RPMD) calculations on a new global ab initio potential energy surface (PES) for the ground electronic state, which is constructed based on 8996 symmetry unique points computed at the icMRCI+Q/aug-cc-pVQZ level. The PES reproduces our ab initio data very well in the dynamically important regions, on which the ro-vibrational energy levels of SiH2 are calculated and general good agreement with experiment is obtained. The integral cross sections and product angular and state distributions are computed in a wide range of collision energies, and interesting dynamics behaviors are revealed. The rate coefficients are also investigated, which display an exponential rise from 2.09 × 10-20 to 6.00 × 10-12 cm3 s-1 for the Si(1D) + H2 reaction as the temperature increases from 300 to 1500 K, in contrast to the nearly temperature-independent behavior of exothermic complex-forming reactions. In addition, the applicability of the RPMD approach is demonstrated, and the kinetic isotope effect is investigated, the ratio of which decreases from 7.89 (300 K) to 1.70 (1500 K). The effects of tunneling and initial rotational excitation are also discussed.
Collapse
Affiliation(s)
- Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhitao Shen
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Chen Q, Hu X, Guo H, Xie D. Theoretical H + O 3 rate coefficients from ring polymer molecular dynamics on an accurate global potential energy surface: assessing experimental uncertainties. Phys Chem Chem Phys 2021; 23:3300-3310. [PMID: 33506830 DOI: 10.1039/d0cp05771a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients and kinetic isotope effects have been calculated for an important atmospheric reaction H/D + O3 → OH/OD + O2 based on an accurate permutation invariant polynomial-neural network potential energy surface, using ring polymer molecular dynamics (RPMD), quasi-classical trajectory (QCT) and variational transition-state theory (VTST) with multidimensional tunneling. The RPMD approach yielded results that are generally in better agreement with experimental rate coefficients than the VTST and QCT ones, especially at low temperatures, attributable to its capacity to capture quantum effects such as tunneling and zero-point energy. The theoretical results support one group of existing experiments over the other. In addition, rate coefficients for the D + O3 → OD + O2 reaction are also reported using the same methods, which will allow a stringent assessment of future experimental measurements, thus helping to reduce the uncertainty in the recommended rate coefficients of this reaction.
Collapse
Affiliation(s)
- Qixin Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xixi Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
16
|
Nuñez-Reyes D, Hickson KM, Loison JC, Spada RFK, Vichietti RM, Machado FBC, Haiduke RLA. Tunneling Enhancement of the Gas-Phase CH + CO 2 Reaction at Low Temperature. J Phys Chem A 2020; 124:10717-10725. [DOI: 10.1021/acs.jpca.0c08070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Rene F. K. Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12228-900, Brazil
| | - Rafael M. Vichietti
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12228-900, Brazil
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12228-900, Brazil
| | - Roberto L. A. Haiduke
- Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13566-590, Brazil
| |
Collapse
|
17
|
Hickson KM, Bray C, Loison JC, Dobrijevic M. A kinetic study of the N( 2D) + C 2H 4 reaction at low temperature. Phys Chem Chem Phys 2020; 22:14026-14035. [PMID: 32558865 DOI: 10.1039/d0cp02083d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronically excited nitrogen atoms N(2D) are important species in the photochemistry of N2 based planetary atmospheres such as Titan. Despite this, few N(2D) reactions have been studied over the appropriate low temperature range. During the present work, rate constants were measured for the N(2D) + ethene (C2H4) reaction using a supersonic flow reactor at temperatures between 50 K and 296 K. Here, a chemical reaction was used to generate N(2D) atoms, which were detected directly by laser induced fluorescence in the vacuum ultraviolet wavelength region. The measured rate constants displayed very little variation as a function of temperature, with substantially larger values than those obtained in previous work. Indeed, considering an average temperature of 170 K for the atmosphere of Titan leads to a rate constant that is almost seven times larger than the currently recommended value. In parallel, electronic structure calculations were performed to provide insight into the reactive process. While earlier theoretical work at a lower level predicted the presence of a barrier for the N(2D) + C2H4 reaction, the present calculations demonstrate that two of the five doublet potential energy surfaces correlating with reagents are likely to be attractive, presenting no barriers for the perpendicular approach of the N atom to the C[double bond, length as m-dash]C bond of ethene. The measured rate constants and new product channels taken from recent dynamical investigations of this process are included in a 1D coupled ion-neutral model of Titan's atmosphere. These simulations indicate that the modeled abundances of numerous nitrogen bearing compounds are noticeably affected by these changes.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France.
| | | | | | | |
Collapse
|
18
|
Wu Y, Cao J, Bian W. Quantum Dynamics Study of the C( 1D) + HD Reaction on the ã 1A' and b̃ 1A″ Potential Energy Surfaces. J Phys Chem A 2020; 124:801-809. [PMID: 31958231 DOI: 10.1021/acs.jpca.9b09822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an in-depth theoretical study of the C(1D) + HD (v = 0, j = 0) → CD (CH) (v', j') + H (D) reaction using a time-dependent wave packet method with full Coriolis coupling on the Zhang-Ma-Bian potential energy surfaces (PESs) recently constructed by our group. The integral cross sections (ICS), differential cross sections, CD/CH branching ratios, and product state distributions are calculated over a wide range of collision energies. We find that the vibrational branching ratio defined as ICS(v'=1)/ICS(v'=0) obtained from the b̃1A″ PES is much smaller than that from the ã1A' PES for both product channels, which may be attributed to the dynamical effects of the conical intersection regulated (CI-R) intermediate on the b̃1A″ PES. The collision energy dependence of CD/CH branching ratios displays oscillatory structures, which may be caused by the resonance states supported by the wells on the PESs. The high-temperature rate coefficients are also obtained and compared with previous results. The role of the excited-state PESs is also discussed.
Collapse
Affiliation(s)
- Yanan Wu
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , China.,School of Chemical Sciences , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
19
|
Nuñez-Reyes D, Bray C, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T. Experimental and theoretical studies of the N(2D) + H2 and D2 reactions. Phys Chem Chem Phys 2020; 22:23609-23617. [DOI: 10.1039/d0cp03971c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study reports the first kinetic measurements of the N(2D) + H2, D2 reactions below 200 K.
Collapse
Affiliation(s)
| | - Cédric Bray
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Pascal Larrégaray
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Laurent Bonnet
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | | |
Collapse
|
20
|
Liu Y, Li J. An accurate potential energy surface and ring polymer molecular dynamics study of the Cl + CH4→ HCl + CH3reaction. Phys Chem Chem Phys 2020; 22:344-353. [DOI: 10.1039/c9cp05693a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thermal rate coefficients for the Cl + CH4/CD4reactions were studied on a new full-dimensional accurate potential energy surface with the spin–orbit corrections considered in the entrance channel.
Collapse
Affiliation(s)
- Yang Liu
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| | - Jun Li
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- China
| |
Collapse
|
21
|
Novikov IS, Shapeev AV, Suleimanov YV. Ring polymer molecular dynamics and active learning of moment tensor potential for gas-phase barrierless reactions: Application to S + H2. J Chem Phys 2019; 151:224105. [DOI: 10.1063/1.5127561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ivan S. Novikov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia
| | - Alexander V. Shapeev
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia
| | - Yury V. Suleimanov
- Computation-Based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Street, Nicosia 2121, Cyprus
| |
Collapse
|
22
|
González-Lezana T, Bossion D, Scribano Y, Bhowmick S, Suleimanov YV. Dynamics of H + HeH +( v = 0, j = 0) → H 2+ + He: Insight on the Possible Complex-Forming Behavior of the Reaction. J Phys Chem A 2019; 123:10480-10489. [PMID: 31725286 DOI: 10.1021/acs.jpca.9b06122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H + HeH+→ He + H2+ reaction has been studied by means of a combination of theoretical approaches: a statistical quantum method (SQM), ring polymer molecular dynamics (RPMD), and the quasiclassical trajectory (QCT) method. Cross sections and rate constants have been calculated in an attempt to investigate the dynamics of the process. The comparison with previous calculations and experimental results reveals that despite the fact that statistical predictions seem to reproduce some of the overall observed features, the analysis at a more detailed state-to-state level shows noticeable deviations from a complex-forming dynamics. We find some differences in cross sections and rate constants obtained in the QCT calculation with a Gaussian binning procedure with respect to previous works in which the standard histogram binning was employed.
Collapse
Affiliation(s)
| | - Duncan Bossion
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299 , Université de Montpellier , 34095 Montpellier Cedex , France
| | - Yohann Scribano
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299 , Université de Montpellier , 34095 Montpellier Cedex , France
| | - Somnath Bhowmick
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus
| |
Collapse
|
23
|
Bulut N, Aguado A, Sanz-Sanz C, Roncero O. Quantum Effects on the D + H 3+ → H 2D + + H Deuteration Reaction and Isotopic Variants. J Phys Chem A 2019; 123:8766-8775. [PMID: 31545608 DOI: 10.1021/acs.jpca.9b06081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The title reaction and its isotopic variants are studied using quasi-classical trajectory (QCT) (without taking into account corrections to account for the possible zero point energy breakdown) and ring polymer molecular dynamics (RPMD) methods with a full dimensional and accurate potential energy surface which presents an exchange barrier of approximately 0.144 eV. The QCT rate constant increases when the temperature decreases from 1500 to 10 K. On the contrary, the RPMD rate constant decreases with decreasing temperature, in semiquantitative agreement with recent experimental results. The present RPMD results are in between the thermal and translational experimental rate constants, extracted from the measured data to eliminate the initial vibrational excitation of H3+, obtained in an arc discharge. The difference between the present RPMD results and experimental values is attributed to the possible existence of non thermal vibrational excitation of H3+, not completely removed by the semiempirical model used for the analysis of the experimental results. Also, it is found that, below 200 K, the RPMD trajectories are trapped, forming long-lived collision complexes, with lifetimes longer than 1 ns. These collision complexes can fragment by either redissociating back to reactants or react to products, in the two cases tunneling through the centrifugal and reaction barriers, respectively. The contribution of the formation of the complex to the total deuteration rate should be calculated with more accurate quantum methods, as has been found recently for reactions of larger systems, and the present four atoms system is a good candidate to benchmark the adequacy of RPMD method at temperatures below 100 K.
Collapse
Affiliation(s)
- Niyazi Bulut
- Department of Physics , Firat University , 23169 Elazig , Turkey
| | - Alfredo Aguado
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias, Módulo 14 , Universidad Autónoma de Madrid , 28049 , Madrid , Spain
| | - Cristina Sanz-Sanz
- Unidad Asociada UAM-IFF-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias, Módulo 14 , Universidad Autónoma de Madrid , 28049 , Madrid , Spain
| | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C. , Serrano 123 , 28006 Madrid , Spain
| |
Collapse
|
24
|
Nuñez-Reyes D, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T, Bhowmick S, Suleimanov YV. Experimental and Theoretical Study of the O( 1D) + HD Reaction. J Phys Chem A 2019; 123:8089-8098. [PMID: 31464440 DOI: 10.1021/acs.jpca.9b06133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work addresses the kinetics and dynamics of the gas-phase reaction between O(1D) and HD molecules down to low temperature. Here, measurements were performed by using a supersonic flow (Laval nozzle) reactor coupled with pulsed laser photolysis for O(1D) production and pulsed-laser-induced fluorescence for O(1D) detection to obtain rate constants over the 50-300 K range. Additionally, temperature-dependent branching ratios (OD + H/OH + D) were obtained experimentally by comparison of the H/D atom atom yields with those of a reference reaction. In parallel, theoretical rate constants and branching ratios were calculated by using three different techniques; mean potential phase space theory (MPPST), the statistical quantum mechanical method (SQM), and ring polymer molecular dynamics (RPMD). Although the agreement between experimental and theoretical rate constants is reasonably good, with differences not exceeding 30% over the entire temperature range, the theoretical branching ratios derived by the MPPST and SQM methods are as much as 50% larger than the experimental ones. These results are presented in the context of earlier work, while the possible origins of the discrepancies between experiment and theory are discussed.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Pascal Larrégaray
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Laurent Bonnet
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , UMR 5255, F-33400 Talence , France
| | - Tomás González-Lezana
- Instituto de Física Fundamental , CSIC , IFF-CSIC Serrano 123 , 28006 Madrid , Spain
| | - Somnath Bhowmick
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center , The Cyprus Institute , 20 Konstantinou Kavafi Street , Nicosia 2121 , Cyprus.,Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
25
|
Menéndez M, Jambrina PG, Zanchet A, Verdasco E, Suleimanov YV, Aoiz FJ. New Stress Test for Ring Polymer Molecular Dynamics: Rate Coefficients of the O( 3P) + HCl Reaction and Comparison with Quantum Mechanical and Quasiclassical Trajectory Results. J Phys Chem A 2019; 123:7920-7931. [PMID: 31461272 DOI: 10.1021/acs.jpca.9b06695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the past decade, ring polymer molecular dynamics (RPMD) has emerged as a very efficient method to determine thermal rate coefficients for a great variety of chemical reactions. This work presents the application of this methodology to study the O(3P) + HCl reaction, which constitutes a stringent test for any dynamical calculation due to rich resonant structure and other dynamical features. The rate coefficients, calculated on the 3A' and 3A″ potential energy surfaces (PESs) by Ramachandran and Peterson [ J. Chem. Phys. 2003 , 119 , 9590 ], using RPMD and quasiclassical trajectories (QCT) are compared with the existing experimental and the quantum mechanical (QM) results by Xie et al. [ J. Chem. Phys. 2005 122 , 014301 ]. The agreement is very good at T > 600 K, although RPMD underestimates rate coefficients by a factor between 4 and 2 in the 200-500 K interval. The origin of these discrepancies lies in the large contribution from tunneling on the 3A″ PES, which is enhanced by resonances due to quasibound states in the van der Waals wells. Although tunneling is fairly well accounted for by RPMD even below the crossover temperature, the effect of resonances, a long-time effect, is not included in the methodology. At the highest temperatures studied in this work, 2000-3300 K, the RPMD rate coefficients are somewhat larger than the QM ones, but this is shown to be due to limitations in the QM calculations and the RPMD are believed to be more reliable.
Collapse
Affiliation(s)
- M Menéndez
- Departamento de Química Física I, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - P G Jambrina
- Departamento de Química Física, Facultad de Ciencias Químicas , Universidad de Salamanca , 37008 Salamanca , Spain
| | - A Zanchet
- Departamento de Química Física I, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - E Verdasco
- Departamento de Química Física I, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| | - Y V Suleimanov
- Computation-based Science and Technology Research Center , Cyprus Institute , 20 Kavafi Strasse , Nicosia 2121 , Cyprus.,Department of Chemical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - F J Aoiz
- Departamento de Química Física I, Facultad de Ciencias Químicas , Universidad Complutense de Madrid , 28040 Madrid , Spain
| |
Collapse
|
26
|
Hickson KM. Low-Temperature Rate Constants and Product-Branching Ratios for the C( 1D) + H 2O Reaction. J Phys Chem A 2019; 123:5206-5213. [PMID: 31198039 DOI: 10.1021/acs.jpca.9b03037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gas-phase reaction between atomic carbon in its first electronically excited 1D state and water has been studied over the 50-296 K temperature range using a supersonic flow apparatus. C(1D) atoms were produced by pulsed ultraviolet multiphoton dissociation of carbon tetrabromide; a process that also generates ground-state atomic carbon C(3P). The reaction was followed by detecting product H-atoms by pulsed vacuum ultraviolet laser-induced fluorescence. Two types of experiment were performed. First, temperature-dependent rate constants were derived by recording H-atom formation curves at various gas-phase water concentrations at each temperature. Secondly, temperature-dependent H-atom yields were extracted by comparing the H-atom fluorescence intensities generated by the target C(1D) + H2O reaction with those of a reference reaction. The second-order rate constants are large and increase to low temperature, whereas the measured H-atom yields are close to the theoretical maximum value of 2 above 100 K. At 50 K, neither rate constants nor H-atom yields could be derived because of H-atom formation by quantum tunneling in the activated C(3P) + H2O reaction. The present results are discussed in the context of earlier work on the C(1D)/C(3P) + H2O reactions.
Collapse
Affiliation(s)
- Kevin M Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires , F-33400 Talence , France.,CNRS, Institut des Sciences Moléculaires , F-33400 Talence , France
| |
Collapse
|
27
|
Lu X, Wang X, Fu B, Zhang D. Theoretical Investigations of Rate Coefficients of H + H2O2 → OH + H2O on a Full-Dimensional Potential Energy Surface. J Phys Chem A 2019; 123:3969-3976. [DOI: 10.1021/acs.jpca.9b02526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
28
|
Wu Y, Cao J, Ma H, Zhang C, Bian W, Nunez-Reyes D, Hickson KM. Conical intersection-regulated intermediates in bimolecular reactions: Insights from C( 1D) + HD dynamics. SCIENCE ADVANCES 2019; 5:eaaw0446. [PMID: 31032418 PMCID: PMC6486230 DOI: 10.1126/sciadv.aaw0446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
The importance of conical intersections (CIs) in electronically nonadiabatic processes is well known, but their influence on adiabatic dynamics has been underestimated. Here, through combined experimental and theoretical studies, we show that CIs induce a barrier and regulate conversion from a precursor metastable intermediate (CI-R) to a deep well one. This results in bond-selective activation, influencing the adiabatic dynamics markedly in the C(1D) + HD reaction. Theory is validated by experiment; quantum dynamics calculations on highly accurate ab initio potential energy surfaces yield rate coefficients and product branching ratios in excellent agreement with the experiment. Quasi-classical trajectory calculations reveal that the CI-R intermediate leads to unusual reaction mechanisms (designated as C─H activation complex conversion and cyclic complex), which are responsible for large branching ratios. We also reveal that CI-R intermediates exist in other reactive systems, and the dynamical effects uncovered here may have general significance.
Collapse
Affiliation(s)
- Yanan Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haitao Ma
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Wensheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dianailys Nunez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, UMR 5255, F-33400 Talence, France
| |
Collapse
|
29
|
Affiliation(s)
- Jian-wei Cao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Feng-yi Li
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-sha Xia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-sheng Bian
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Meng Q, Chen J. Ring-polymer molecular dynamics study on rate coefficient of the barrierless OH + CO system at low temperature. J Chem Phys 2019; 150:044307. [PMID: 30709288 DOI: 10.1063/1.5065657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, 710072 Xi’an, China
| | - Jun Chen
- iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Siming South Road 422, 361005 Xiamen, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, 116023 Dalian, China
| |
Collapse
|
31
|
Nuñez-Reyes D, Loison JC, Hickson KM, Dobrijevic M. A low temperature investigation of the N(2D) + CH4, C2H6 and C3H8 reactions. Phys Chem Chem Phys 2019; 21:6574-6581. [DOI: 10.1039/c9cp00798a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low temperature rate constants for the N(2D) + C2H6, C3H8 reactions are shown to be much smaller than previously thought.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | | | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | - Michel Dobrijevic
- Laboratoire d'Astrophysique de Bordeaux
- Université de Bordeaux
- CNRS, B18N
- allée Geoffroy Saint-Hilaire
- F-33615 Pessac
| |
Collapse
|
32
|
Nuñez-Reyes D, Loison JC, Hickson KM, Dobrijevic M. Rate constants for the N(2D) + C2H2 reaction over the 50–296 K temperature range. Phys Chem Chem Phys 2019; 21:22230-22237. [DOI: 10.1039/c9cp04170b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of metastable atomic nitrogen N(2D) are important processes in the gas-phase chemistry of several planetary atmospheres.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | | | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- UMR 5255
- F-33400 Talence
- France
| | - Michel Dobrijevic
- Laboratoire d'Astrophysique de Bordeaux
- Université de Bordeaux
- CNRS
- F-33615 Pessac
- France
| |
Collapse
|
33
|
An F, Han S, Hu X, Xie D, Guo H. First-principles dynamics of collisional intersystem crossing: resonance enhanced quenching of C(1D) by N2. Phys Chem Chem Phys 2019; 21:8645-8653. [DOI: 10.1039/c8cp07171c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intersystem crossing is a common and important nonadiabatic process in molecular systems. Revealed with a first-principles investigation, the quenching of C(1D) by N2 is efficient due to multiple passages via long-lived collisional resonances, despite relatively small spin–orbit couplings.
Collapse
Affiliation(s)
- Feng An
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University
- Nanjing 210023
- China
| | - Shanyu Han
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University
- Nanjing 210023
- China
- Department of Chemistry and Chemical Biology, University of New Mexico
- Albuquerque
| | - Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University
- Nanjing 210023
- China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University
- Nanjing 210023
- China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico
- Albuquerque
- USA
| |
Collapse
|
34
|
Lu X, Meng Q, Wang X, Fu B, Zhang DH. Rate coefficients of the H + H2O2→ H2+ HO2reaction on an accurate fundamental invariant-neural network potential energy surface. J Chem Phys 2018; 149:174303. [PMID: 30409010 DOI: 10.1063/1.5063613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoxiao Lu
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Qingyong Meng
- Department of Applied Chemistry, Northwestern Polytechnical University, Youyi West Road 127, Xi’an 710072, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
35
|
Bhowmick S, Bossion D, Scribano Y, Suleimanov YV. The low temperature D + + H 2→ HD + H + reaction rate coefficient: a ring polymer molecular dynamics and quasi-classical trajectory study. Phys Chem Chem Phys 2018; 20:26752-26763. [PMID: 30324962 DOI: 10.1039/c8cp05398g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction between D+ and H2 plays an important role in astrochemistry at low temperatures and also serves as a prototype for a simple ion-molecule reaction. Its ground X[combining tilde]1A' state has a very small thermodynamic barrier (up to 1.8 × 10-2 eV) and the reaction proceeds through the formation of an intermediate complex lying within the potential well with a depth of at least 0.2 eV, thus representing a challenge for dynamical studies. In the present work, we analyze the title reaction within the temperature range of 20-100 K by means of ring polymer molecular dynamics (RPMD) and quasi-classical trajectory (QCT) methods over the full-dimensional global potential energy surface developed by Aguado et al. [A. Aguado, O. Roncero, C. Tablero, C. Sanz and M. Paniagua, J. Chem. Phys., 2000, 112, 1240]. The computed thermal RPMD and QCT rate coefficients are found to be almost independent of temperature and fall within the range of 1.34-2.01 × 10-9 cm3 s-1. They are also in very good agreement with previous time-independent quantum mechanical and statistical quantum method calculations. Furthermore, we observe that the choice of asymptotic separation distance between the reactants can markedly alter the rate coefficient in the low temperature regime (20-50 K). Therefore it is of utmost importance to correctly assign the value of this parameter for dynamical studies, particularly at very low temperatures of astrochemical importance. We finally conclude that the experimental rate measurements for the title reaction are highly desirable in future.
Collapse
Affiliation(s)
- Somnath Bhowmick
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| | - Duncan Bossion
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yohann Scribano
- Laboratoire Univers et Particules de Montpellier, UMR-CNRS 5299, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier, France
| | - Yury V Suleimanov
- Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, Nicosia 2121, Cyprus.
| |
Collapse
|
36
|
González-Lezana T, Larrégaray P, Bonnet L, Wu Y, Bian W. The dynamics of the C(1D)+H2/D2/HD reactions at low temperature. J Chem Phys 2018; 148:234305. [DOI: 10.1063/1.5026454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Pascal Larrégaray
- Institut des Sciences Moléculaires, Université de Bordeaux, F-33400 Talence, France and CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Laurent Bonnet
- Institut des Sciences Moléculaires, Université de Bordeaux, F-33400 Talence, France and CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Yanan Wu
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Bian
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China and School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Suleimanov YV, Aguado A, Gómez-Carrasco S, Roncero O. A Ring Polymer Molecular Dynamics Approach to Study the Transition between Statistical and Direct Mechanisms in the H 2 + H 3+ → H 3+ + H 2 Reaction. J Phys Chem Lett 2018; 9:2133-2137. [PMID: 29633841 PMCID: PMC6031303 DOI: 10.1021/acs.jpclett.8b00783] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Because of its fundamental importance in astrochemistry, the H2 + H3+ → H3+ + H2 reaction has been studied experimentally in a wide temperature range. Theoretical studies of the title reaction significantly lag primarily because of the challenges associated with the proper treatment of the zero-point energy (ZPE). As a result, all previous theoretical estimates for the ratio between a direct proton-hop and indirect exchange (via the H5+ complex) channels deviate from the experiment, in particular, at lower temperatures where the quantum effects dominate. In this work, the ring polymer molecular dynamics (RPMD) method is applied to study this reaction, providing very good agreement with the experiment. RPMD is immune to the shortcomings associated with the ZPE leakage and is able to describe the transition from direct to indirect mechanisms below room temperature. We argue that RPMD represents a useful tool for further studies of numerous ZPE-sensitive chemical reactions that are of high interest in astrochemistry.
Collapse
Affiliation(s)
- Yury V. Suleimanov
- Computation-based Science and Technology Research Center, Cyprus Institute, 20 Kavafi Str., Nicosia 2121, Cyprus
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139, United States
| | - Alfredo Aguado
- Unidad Asociada UAM-CSIC, Departamento de Química Física Aplicada, Facultad de Ciencias M-14, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Octavio Roncero
- Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
38
|
Nuñez-Reyes D, Hickson KM. Kinetics of the Gas-Phase O(1D) + CO2 and C(1D) + CO2 Reactions over the 50–296 K Range. J Phys Chem A 2018; 122:4002-4008. [DOI: 10.1021/acs.jpca.8b01964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| |
Collapse
|
39
|
Nuñez-Reyes D, Hickson KM, Larrégaray P, Bonnet L, González-Lezana T, Suleimanov YV. A combined theoretical and experimental investigation of the kinetics and dynamics of the O( 1D) + D 2 reaction at low temperature. Phys Chem Chem Phys 2018; 20:4404-4414. [PMID: 29372194 DOI: 10.1039/c7cp07843a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The O(1D) + H2 reaction is a prototype for simple atom-diatom insertion type mechanisms considered to involve deep potential wells. While exact quantum mechanical methods can be applied to describe the dynamics, such calculations are challenging given the numerous bound quantum states involved. Consequently, efforts have been made to develop alternative theoretical strategies to portray accurately the reactive process. Here we report an experimental and theoretical investigation of the O(1D) + D2 reaction over the 50-296 K range. The calculations employ three conceptually different approaches - mean potential phase space theory, the statistical quantum mechanical method and ring polymer molecular dynamics. The calculated rate constants are in excellent agreement over the entire temperature range, exhibiting only weak temperature dependence. The agreement between experiment and theory is also very good, with discrepancies smaller than 26%. Taken together, the present and previous theoretical results validate the hypothesis that long-lived complex formation dominates the reaction dynamics at low temperature.
Collapse
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France.
| | | | | | | | | | | |
Collapse
|
40
|
Novikov IS, Suleimanov YV, Shapeev AV. Automated calculation of thermal rate coefficients using ring polymer molecular dynamics and machine-learning interatomic potentials with active learning. Phys Chem Chem Phys 2018; 20:29503-29512. [DOI: 10.1039/c8cp06037a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We propose a methodology for the fully automated calculation of thermal rate coefficients of gas phase chemical reactions, which is based on combining ring polymer molecular dynamics (RPMD) and machine-learning interatomic potentials actively learning on-the-fly.
Collapse
Affiliation(s)
- I. S. Novikov
- Skolkovo Institute of Science and Technology
- Skolkovo Innovation Center
- Moscow 143026
- Russia
| | - Y. V. Suleimanov
- Computation-based Science and Technology Research Center
- Cyprus Institute
- Nicosia 2121
- Cyprus
- Department of Chemical Engineering
| | - A. V. Shapeev
- Skolkovo Institute of Science and Technology
- Skolkovo Innovation Center
- Moscow 143026
- Russia
| |
Collapse
|
41
|
Nuñez-Reyes D, Hickson KM. A low temperature investigation of the gas-phase N(2D) + NO reaction. Towards a viable source of N(2D) atoms for kinetic studies in astrochemistry. Phys Chem Chem Phys 2018; 20:17442-17447. [DOI: 10.1039/c8cp02851f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The gas-phase reaction of metastable atomic nitrogen N(2D) with nitric oxide has been investigated over the 296–50 K temperature range using a supersonic flow reactor.
Collapse
Affiliation(s)
| | - Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| |
Collapse
|
42
|
|
43
|
Potapov A, Canosa A, Jiménez E, Rowe B. Chemie mit Überschall: 30 Jahre astrochemische Forschung und künftige Herausforderungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Deutschland
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex Frankreich
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spanien
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer Frankreich
| |
Collapse
|
44
|
Potapov A, Canosa A, Jiménez E, Rowe B. Uniform Supersonic Chemical Reactors: 30 Years of Astrochemical History and Future Challenges. Angew Chem Int Ed Engl 2017; 56:8618-8640. [DOI: 10.1002/anie.201611240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/27/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Alexey Potapov
- Laborastrophysikgruppe des Max-Planck-Instituts für Astronomie am Institut für Festkörperphysik; Friedrich-Schiller-Universität Jena; Helmholtzweg 3 07743 Jena Germany
| | - André Canosa
- Département de Physique Moléculaire; Institut de Physique de Rennes, UMR CNRS-UR1 6251, Université de Rennes 1, Campus de Beaulieu; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas; Universidad de Castilla-La Mancha; Avda. Camilo José Cela, 1B 13071 Ciudad Real Spain
| | - Bertrand Rowe
- Rowe-consulting, 22 Chemin des Moines; 22750 Saint Jacut de la Mer France
| |
Collapse
|
45
|
Nuñez-Reyes D, Hickson KM. Kinetic and Product Study of the Reactions of C(1D) with CH4 and C2H6 at Low Temperature. J Phys Chem A 2017; 121:3851-3857. [DOI: 10.1021/acs.jpca.7b01790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dianailys Nuñez-Reyes
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| | - Kevin M. Hickson
- Université de Bordeaux, Institut des Sciences Moléculaires, F-33400 Talence, France
- CNRS, Institut des Sciences Moléculaires, F-33400 Talence, France
| |
Collapse
|
46
|
Hickson KM, Suleimanov YV. Low-Temperature Experimental and Theoretical Rate Constants for the O(1D) + H2 Reaction. J Phys Chem A 2017; 121:1916-1923. [DOI: 10.1021/acs.jpca.7b00722] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin M. Hickson
- Institut
des Sciences Moléculaires, Université de Bordeaux, F-33400 Talence, France
- Institut
des Sciences Moléculaires, CNRS, F-33400 Talence, France
| | - Yury V. Suleimanov
- Computation-based
Science and Technology Research Center, Cyprus Institute, 20 Kavafi Strasse, Nicosia 2121, Cyprus
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Shen Z, Ma H, Zhang C, Fu M, Wu Y, Bian W, Cao J. Dynamical importance of van der Waals saddle and excited potential surface in C( 1D)+D 2 complex-forming reaction. Nat Commun 2017; 8:14094. [PMID: 28094253 PMCID: PMC5247604 DOI: 10.1038/ncomms14094] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 11/29/2016] [Indexed: 11/28/2022] Open
Abstract
Encouraged by recent advances in revealing significant effects of van der Waals wells on reaction dynamics, many people assume that van der Waals wells are inevitable in chemical reactions. Here we find that the weak long-range forces cause van der Waals saddles in the prototypical C(1D)+D2 complex-forming reaction that have very different dynamical effects from van der Waals wells at low collision energies. Accurate quantum dynamics calculations on our highly accurate ab initio potential energy surfaces with van der Waals saddles yield cross-sections in close agreement with crossed-beam experiments, whereas the same calculations on an earlier surface with van der Waals wells produce much smaller cross-sections at low energies. Further trajectory calculations reveal that the van der Waals saddle leads to a torsion then sideways insertion reaction mechanism, whereas the well suppresses reactivity. Quantum diffraction oscillations and sharp resonances are also predicted based on our ground- and excited-state potential energy surfaces. It is commonly held that van der Waals wells are inevitable in chemical reactions. Here, the authors show that weak van der Waals forces in the entrance channel of a prototypical complex-forming reaction cause a van der Waals saddle instead, with different dynamical effects from a well at low collision energies.
Collapse
Affiliation(s)
- Zhitao Shen
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Ma
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunfang Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkai Fu
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wu
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wensheng Bian
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianwei Cao
- State Key Laboratory of Molecular Reaction Dynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
48
|
Zhang C, Zheng Y, Cao J, Bian W. Quasiclassical trajectory study of the C(1D) + HD reaction. RSC Adv 2017. [DOI: 10.1039/c7ra03966b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Isotopic branching ratios are investigated by detailed quasiclassical trajectory calculations on our recent singlet ground and excited potential energy surfaces.
Collapse
Affiliation(s)
- Chunfang Zhang
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Yujun Zheng
- School of Physics
- Shandong University
- Jinan 250100
- China
| | - Jianwei Cao
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Wensheng Bian
- CAS Research/Education Center for Excellence in Molecular Sciences
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
49
|
Espinosa-Garcia J, Rangel C, Suleimanov YV. Kinetics study of the CN + CH4 hydrogen abstraction reaction based on a new ab initio analytical full-dimensional potential energy surface. Phys Chem Chem Phys 2017; 19:19341-19351. [DOI: 10.1039/c7cp03499g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an analytical full-dimensional potential energy surface, named PES-2017, for the gas-phase hydrogen abstraction reaction between the cyano radical and methane.
Collapse
Affiliation(s)
- Joaquin Espinosa-Garcia
- Departamento de Química Física and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- Badajoz
- Spain
| | - Cipriano Rangel
- Departamento de Química Física and Instituto de Computación Científica Avanzada
- Universidad de Extremadura
- Badajoz
- Spain
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center
- Cyprus Institute
- Nicosia 2121
- Cyprus
| |
Collapse
|
50
|
Hickson KM, Suleimanov YV. An experimental and theoretical investigation of the C(1D) + D2 reaction. Phys Chem Chem Phys 2017; 19:480-486. [DOI: 10.1039/c6cp07381f] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rate constants derived from ring polymer molecular dynamics calculations confirm the validity of this method for studying low-temperature complex-forming reactions
Collapse
Affiliation(s)
- Kevin M. Hickson
- Université de Bordeaux
- Institut des Sciences Moléculaires
- F-33400 Talence
- France
- CNRS
| | - Yury V. Suleimanov
- Computation-based Science and Technology Research Center
- Cyprus Institute
- Nicosia 2121
- Cyprus
- Department of Chemical Engineering
| |
Collapse
|