1
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Lane PD, Gstir T, Purcell SM, Swierczewski M, Elstone NS, Bruce DW, Slattery JM, Costen ML, McKendrick KG. Superthermal Al Atoms as a Reactive-Atom Probe of Fluorinated Surfaces. J Phys Chem A 2023; 127:5580-5590. [PMID: 37352233 PMCID: PMC10331727 DOI: 10.1021/acs.jpca.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/06/2023] [Indexed: 06/25/2023]
Abstract
We demonstrate a proof-of-concept of a new analytical technique to measure relative F atom exposure at the surfaces of fluorinated materials. The method is based on reactive-atom scattering (RAS) of Al atoms, produced by pulsed laser ablation of solid Al at 532 nm. The properties of the incident ground-state Al were characterized by laser-induced fluorescence (LIF); at typical ablation fluences, the speed distribution is approximately Maxwellian at ∼45000 K, with a most-probable kinetic energy of 187 kJ mol-1 and a mean of 560 kJ mol-1 When these Al atoms impact the surfaces of perfluorinated solids (poly(tetrafluorethylene), PTFE) or liquids (perfluoropolyether, PFPE), gas-phase AlF products are clearly detectable by LIF on the AlF A-X band. Quantitative AlF yields were compared for a small representative set of a widely studied family of ionic liquids based on the common 1-alkyl-3-methylimidazolium ([Cnmim]+) cation. Yields of (1.9 ± 0.2):1 were found from [C2mim][Tf2N] and [C8mim][Tf2N], containing the common fluorinated bis(trifluoromethylsulfonyl)imide anion ([Tf2N]-). This is in quantitative agreement with previous independent low-energy ion scattering (LEIS) measurements and consistent with other independent results indicating that the longer cationic alkyl chains cover a larger fraction of the liquid surface and hence reduce anion exposure. The expected null result was obtained for the ionic liquid [C2mim][EtSO4] which contains no fluorine. These results open the way for further characterization and the potential application of this new variant of the RAS-LIF method.
Collapse
Affiliation(s)
- Paul D. Lane
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Thomas Gstir
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck 6020, Austria
| | - Simon M. Purcell
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Michal Swierczewski
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Naomi S. Elstone
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Duncan W. Bruce
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - John M. Slattery
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Matthew L. Costen
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| | - Kenneth G. McKendrick
- Institute
of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
| |
Collapse
|
3
|
Gao XF, Nathanson GM. Exploring Gas-Liquid Reactions with Microjets: Lessons We Are Learning. Acc Chem Res 2022; 55:3294-3302. [PMID: 36378763 DOI: 10.1021/acs.accounts.2c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liquid water is all around us: at the beach, in a cloud, from a faucet, inside a spray tower, covering our lungs. It is fascinating to imagine what happens to a reactive gas molecule as it approaches the surface of water in these examples. Some incoming molecules may first be deflected away after colliding with an evaporating water molecule. Those that do strike surface H2O or other surface species may bounce directly off or become momentarily trapped through hydrogen bonding or other attractive forces. The adsorbed gas molecule can then desorb immediately or instead dissolve, passing through the interfacial region and into the bulk, perhaps diffusing back to the surface and evaporating before reacting. Alternatively, it may react with solute or water molecules in the interfacial or bulk regions, and a reaction intermediate or the final product may then desorb into the gas phase. Building a "blow by blow" picture of these pathways is challenging for vacuum-based techniques because of the high vapor pressure of water. In particular, collisions within the thick vapor cloud created by evaporating molecules just above the surface scramble the trajectories and internal states of the gaseous target molecules, hindering construction of gas-liquid reaction mechanisms at the atomic scale that we strive to map out.The introduction of the microjet in 1988 by Faubel, Schlemmer, and Toennies opened up entirely new possibilities. Their inspired solution seems so simple: narrow the end of a glass tube to a diameter smaller than the mean free path of the vapor molecules and then push the liquid through the tube at speeds of a car on a highway. The narrow liquid stream creates a sparse vapor cloud, with water molecules spaced far enough apart that they and the reactant gases interact, at most, weakly. Experimentalists, however, confront a host of challenges: nozzle clogging, unstable jetting, searching for vacuum-compatible solutions, measuring low signal levels, and teasing out artifacts because the slender jet is the smallest surface in the vacuum chamber. In this Account, we describe lessons that we are learning as we explore gases (DCl, (HCOOH)2, N2O5) reacting with water molecules and solute ions in the near-interfacial region of these fast-flowing aqueous microjets.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Chien TE, Hohmann L, Harding DJ. Near-ambient pressure velocity map imaging. J Chem Phys 2022; 157:034201. [DOI: 10.1063/5.0098495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a new velocity map imaging instrument for studying molecular beam surface scattering in a near-ambient pressure (NAP-VMI) environment. The instrument offers the possibility to study chemical reaction dynamics and kinetics where higher pressures are either desired or unavoidable, adding a new tool to help close the “pressure gap” between surface science and applied catalysis. NAP-VMI conditions are created by two sets of ion optics that guide ions through an aperture and map their velocities. The aperture separates the high pressure ionization region and maintains the necessary vacuum in the detector region. The performance of the NAP-VMI is demonstrated with results from N2O photodissociation and N2 scattering from a Pd(110) surface, which are compared under vacuum and at near-ambient pressure (1 × 10−3 mbar). NAP-VMI has the potential to be applied to, and useful for, a broader range of experiments, including photoelectron spectroscopy and scattering with liquid microjets.
Collapse
Affiliation(s)
- Tzu-En Chien
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Lea Hohmann
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Dan J. Harding
- Department of Chemical Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| |
Collapse
|
5
|
Lee C, Pohl MN, Ramphal IA, Yang W, Winter B, Abel B, Neumark DM. Evaporation and Molecular Beam Scattering from a Flat Liquid Jet. J Phys Chem A 2022; 126:3373-3383. [PMID: 35579333 DOI: 10.1021/acs.jpca.2c01174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An experimental setup for molecular beam scattering from flat liquid sheets has been developed, with the goal of studying reactions at gas-liquid interfaces for volatile liquids. Specifically, a crossed molecular beam instrument that can measure angular and translational energy distributions of scattered products has been adapted for liquid jet scattering. A microfluidic chip is used to create a stable flat liquid sheet inside vacuum from which scattering occurs, and both evaporation and scattering from this sheet are characterized using a rotatable mass spectrometer that can measure product time-of-flight distributions. This article describes the instrument and reports on the first measurements of evaporation of dodecane and Ne from a Ne-doped dodecane flat jet, as well as scattering of Ne from a flat jet of pure dodecane.
Collapse
Affiliation(s)
- Chin Lee
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marvin N Pohl
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isaac A Ramphal
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Walt Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Bernd Winter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bernd Abel
- Department of Functional Surfaces, Leibniz Institute of Surface Engineering (IOM), Permoserstrasse 15, 04318 Leipzig, Germany.,Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, University of Leipzig, Linnéstrasse 3, 04318 Leipzig, Germany
| | - Daniel M Neumark
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Schewe HC, Credidio B, Ghrist AM, Malerz S, Ozga C, Knie A, Haak H, Meijer G, Winter B, Osterwalder A. Imaging of Chemical Kinetics at the Water-Water Interface in a Free-Flowing Liquid Flat-Jet. J Am Chem Soc 2022; 144:7790-7795. [PMID: 35471014 PMCID: PMC9073938 DOI: 10.1021/jacs.2c01232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present chemical kinetics measurements of the luminol oxidation chemiluminescence (CL) reaction at the interface between two aqueous solutions, using liquid jet technology. Free-flowing liquid microjets are a relatively recent development that have found their way into a growing number of applications in spectroscopy and dynamics. A variant thereof, called flat-jet, is obtained when two cylindrical jets of a liquid are crossed, leading to a chain of planar leaf-shaped structures of the flowing liquid. We here show that in the first leaf of this chain, the fluids do not exhibit turbulent mixing, providing a clean interface between the liquids from the impinging jets. We also show, using the example of the luminol CL reaction, how this setup can be used to obtain kinetics information from friction-less flow and by circumventing the requirement for rapid mixing by intentionally suppressing all turbulent mixing and instead relying on diffusion.
Collapse
Affiliation(s)
- H Christian Schewe
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Bruno Credidio
- Institute for Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aaron M Ghrist
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.,Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, United States
| | - Sebastian Malerz
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Christian Ozga
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - André Knie
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Straße 40, 34132 Kassel, Germany
| | - Henrik Haak
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Gerard Meijer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bernd Winter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Diveky ME, Gleichweit MJ, Roy S, Signorell R. Shining New Light on the Kinetics of Water Uptake by Organic Aerosol Particles. J Phys Chem A 2021; 125:3528-3548. [PMID: 33739837 DOI: 10.1021/acs.jpca.1c00202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The uptake of water vapor by various organic aerosols is important in a number of applications ranging from medical delivery of pharmaceutical aerosols to cloud formation in the atmosphere. The coefficient that describes the probability that the impinging gas-phase molecule sticks to the surface of interest is called the mass accommodation coefficient, αM. Despite the importance of this coefficient for the description of water uptake kinetics, accurate values are still lacking for many systems. In this Feature Article, we present various experimental techniques that have been evoked in the literature to study the interfacial transport of water and discuss the corresponding strengths and limitations. This includes our recently developed technique called photothermal single-particle spectroscopy (PSPS). The PSPS technique allows for a retrieval of αM values from three independent, yet simultaneous measurements operating close to equilibrium, providing a robust assessment of interfacial mass transport. We review the currently available data for αM for water on various organics and discuss the few studies that address the temperature and relative humidity dependence of αM for water on organics. The knowledge of the latter, for example, is crucial to assess the water uptake kinetics of organic aerosols in the Earth's atmosphere. Finally, we argue that PSPS might also be a viable method to better restrict the αM value for water on liquid water.
Collapse
Affiliation(s)
- Matus E Diveky
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Michael J Gleichweit
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Sandra Roy
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Ruth Signorell
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
8
|
Zutz A, Nesbitt DJ. Angle-resolved molecular beam scattering of NO at the gas-liquid interface. J Chem Phys 2017; 147:054704. [PMID: 28789539 DOI: 10.1063/1.4995446] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study presents first results on angle-resolved, inelastic collision dynamics of thermal and hyperthermal molecular beams of NO at gas-liquid interfaces. Specifically, a collimated incident beam of supersonically cooled NO (2Π1/2, J = 0.5) is directed toward a series of low vapor pressure liquid surfaces ([bmim][Tf2N], squalane, and PFPE) at θinc = 45(1)°, with the scattered molecules detected with quantum state resolution over a series of final angles (θs = -60°, -30°, 0°, 30°, 45°, and 60°) via spatially filtered laser induced fluorescence. At low collision energies [Einc = 2.7(9) kcal/mol], the angle-resolved quantum state distributions reveal (i) cos(θs) probabilities for the scattered NO and (ii) electronic/rotational temperatures independent of final angle (θs), in support of a simple physical picture of angle independent sticking coefficients and all incident NO thermally accommodating on the surface. However, the observed electronic/rotational temperatures for NO scattering reveal cooling below the surface temperature (Telec < Trot < TS) for all three liquids, indicating a significant dependence of the sticking coefficient on NO internal quantum state. Angle-resolved scattering at high collision energies [Einc = 20(2) kcal/mol] has also been explored, for which the NO scattering populations reveal angle-dependent dynamical branching between thermal desorption and impulsive scattering (IS) pathways that depend strongly on θs. Characterization of the data in terms of the final angle, rotational state, spin-orbit electronic state, collision energy, and liquid permit new correlations to be revealed and investigated in detail. For example, the IS rotational distributions reveal an enhanced propensity for higher J/spin-orbit excited states scattered into near specular angles and thus hotter rotational/electronic distributions measured in the forward scattering direction. Even more surprisingly, the average NO scattering angle (⟨θs⟩) exhibits a remarkably strong correlation with final angular momentum, N, which implies a linear scaling between net forward scattering propensity and torque delivered to the NO projectile by the gas-liquid interface.
Collapse
Affiliation(s)
- Amelia Zutz
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - David J Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
9
|
Ault AP, Axson JL. Atmospheric Aerosol Chemistry: Spectroscopic and Microscopic Advances. Anal Chem 2016; 89:430-452. [DOI: 10.1021/acs.analchem.6b04670] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Andrew P. Ault
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jessica L. Axson
- Department
of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Murdachaew G, Nathanson GM, Benny Gerber R, Halonen L. Deprotonation of formic acid in collisions with a liquid water surface studied by molecular dynamics and metadynamics simulations. Phys Chem Chem Phys 2016; 18:29756-29770. [DOI: 10.1039/c6cp06071d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Formic acid has a lower barrier to deprotonation at the air–water interface than in bulk liquid water.
Collapse
Affiliation(s)
- Garold Murdachaew
- Laboratory of Physical Chemistry
- Department of Chemistry
- FI-00014 University of Helsinki
- Finland
| | | | - R. Benny Gerber
- Laboratory of Physical Chemistry
- Department of Chemistry
- FI-00014 University of Helsinki
- Finland
- Institute of Chemistry and the Fritz Haber Research Center
| | - Lauri Halonen
- Laboratory of Physical Chemistry
- Department of Chemistry
- FI-00014 University of Helsinki
- Finland
| |
Collapse
|
11
|
Faust JA, Nathanson GM. Microjets and coated wheels: versatile tools for exploring collisions and reactions at gas–liquid interfaces. Chem Soc Rev 2016; 45:3609-20. [DOI: 10.1039/c6cs00079g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scattering experiments using liquid microjets provide a window into collisions and reactions at the surfaces of high vapor pressure liquids.
Collapse
|