1
|
Hue KY, Lew JH, Myo Thant MM, Matar OK, Luckham PF, Müller EA. Molecular Dynamics Simulation of Polyacrylamide Adsorption on Calcite. Molecules 2023; 28:6367. [PMID: 37687196 PMCID: PMC10563068 DOI: 10.3390/molecules28176367] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
In poorly consolidated carbonate rock reservoirs, solids production risk, which can lead to increased environmental waste, can be mitigated by injecting formation-strengthening chemicals. Classical atomistic molecular dynamics (MD) simulation is employed to model the interaction of polyacrylamide-based polymer additives with a calcite structure, which is the main component of carbonate formations. Amongst the possible calcite crystal planes employed as surrogates of reservoir rocks, the (1 0 4) plane is shown to be the most suitable surrogate for assessing the interactions with chemicals due to its stability and more realistic representation of carbonate structure. The molecular conformation and binding energies of pure polyacrylamide (PAM), hydrolysed polyacrylamide in neutral form (HPAM), hydrolysed polyacrylamide with 33% charge density (HPAM 33%) and sulfonated polyacrylamide with 33% charge density (SPAM 33%) are assessed to determine the adsorption characteristics onto calcite surfaces. An adsorption-free energy analysis, using an enhanced umbrella sampling method, is applied to evaluate the chemical adsorption performance. The interaction energy analysis shows that the polyacrylamide-based polymers display favourable interactions with the calcite structure. This is attributed to the electrostatic attraction between the amide and carboxyl functional groups with the calcite. Simulations confirm that HPAM33% has a lower free energy than other polymers, presumably due to the presence of the acrylate monomer in ionised form. The superior chemical adsorption performance of HPAM33% agrees with Atomic Force Microscopy experiments reported herein.
Collapse
Affiliation(s)
- Keat Yung Hue
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (K.Y.H.); (J.H.L.); (O.K.M.); (P.F.L.)
| | - Jin Hau Lew
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (K.Y.H.); (J.H.L.); (O.K.M.); (P.F.L.)
| | - Maung Maung Myo Thant
- PETRONAS Research Sdn. Bhd., Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, Kajang 43000, Selangor, Malaysia;
| | - Omar K. Matar
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (K.Y.H.); (J.H.L.); (O.K.M.); (P.F.L.)
| | - Paul F. Luckham
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (K.Y.H.); (J.H.L.); (O.K.M.); (P.F.L.)
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK; (K.Y.H.); (J.H.L.); (O.K.M.); (P.F.L.)
| |
Collapse
|
2
|
Lam J, Lutsko JF. Solvent-mediated interactions between nanostructures: From water to Lennard-Jones liquid. J Chem Phys 2018; 149:134703. [PMID: 30292194 DOI: 10.1063/1.5037571] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Solvent-mediated interactions emerge from complex mechanisms that depend on the solute structure, its wetting properties, and the nature of the liquid. While numerous studies have focused on the first two influences, here, we compare the results from water and Lennard-Jones liquid in order to reveal to what extent solvent-mediated interactions are universal with respect to the nature of the liquid. Besides the influence of the liquid, the results were obtained with classical density functional theory and brute-force molecular dynamics simulations which allow us to contrast these two numerical techniques.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Universite Libre de Bruxelles, Code Postal 231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
3
|
Jabes BS, Bratko D, Luzar A. Curvature dependence of the effect of ionic functionalization on the attraction among nanoparticles in dispersion. J Chem Phys 2018; 148:222815. [DOI: 10.1063/1.5017525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- B. Shadrack Jabes
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, USA
| |
Collapse
|
4
|
Hydrophobicity of proteins and nanostructured solutes is governed by topographical and chemical context. Proc Natl Acad Sci U S A 2017; 114:13345-13350. [PMID: 29158409 DOI: 10.1073/pnas.1700092114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hydrophobic interactions drive many important biomolecular self-assembly phenomena. However, characterizing hydrophobicity at the nanoscale has remained a challenge due to its nontrivial dependence on the chemistry and topography of biomolecular surfaces. Here we use molecular simulations coupled with enhanced sampling methods to systematically displace water molecules from the hydration shells of nanostructured solutes and calculate the free energetics of interfacial water density fluctuations, which quantify the extent of solute-water adhesion, and therefore solute hydrophobicity. In particular, we characterize the hydrophobicity of curved graphene sheets, self-assembled monolayers (SAMs) with chemical patterns, and mutants of the protein hydrophobin-II. We find that water density fluctuations are enhanced near concave nonpolar surfaces compared with those near flat or convex ones, suggesting that concave surfaces are more hydrophobic. We also find that patterned SAMs and protein mutants, having the same number of nonpolar and polar sites but different geometrical arrangements, can display significantly different strengths of adhesion with water. Specifically, hydroxyl groups reduce the hydrophobicity of methyl-terminated SAMs most effectively not when they are clustered together but when they are separated by one methyl group. Hydrophobin-II mutants show that a charged amino acid reduces the hydrophobicity of a large nonpolar patch when placed at its center, rather than at its edge. Our results highlight the power of water density fluctuations-based measures to characterize the hydrophobicity of nanoscale surfaces and caution against the use of additive approximations, such as the commonly used surface area models or hydropathy scales for characterizing biomolecular hydrophobicity and the associated driving forces of assembly.
Collapse
|
5
|
Lam J, Lutsko JF. Solute particle near a nanopore: influence of size and surface properties on the solvent-mediated forces. NANOSCALE 2017; 9:17099-17108. [PMID: 29087410 DOI: 10.1039/c7nr07218j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscopic pores are used in various systems to attract nanoparticles. In general the behaviour is a result of two types of interactions: the material specific affinity and the solvent-mediated influence also called the depletion force. The latter is more universal but also much more complex to understand since it requires modeling both the nanoparticle and the solvent. Here, we employed classical density functional theory to determine the forces acting on a nanoparticle near a nanoscopic pore as a function of its hydrophobicity and its size. A simple capillary model is constructed to predict those depletion forces for various surface properties. For a nanoscopic pore, complexity arises from both the specific geometry and the fact that hydrophobic pores are not necessarily filled with liquid. Taking all of these effects into account and including electrostatic effects, we establish a phase diagram describing the entrance and the rejection of the nanoparticle from the pore.
Collapse
Affiliation(s)
- Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| | - James F Lutsko
- Center for Nonlinear Phenomena and Complex Systems, Code Postal 231, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium.
| |
Collapse
|
6
|
Brini E, Fennell CJ, Fernandez-Serra M, Hribar-Lee B, Lukšič M, Dill KA. How Water's Properties Are Encoded in Its Molecular Structure and Energies. Chem Rev 2017; 117:12385-12414. [PMID: 28949513 PMCID: PMC5639468 DOI: 10.1021/acs.chemrev.7b00259] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/29/2022]
Abstract
How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties.
Collapse
Affiliation(s)
- Emiliano Brini
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher J. Fennell
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Marivi Fernandez-Serra
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Barbara Hribar-Lee
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna
pot 113, SI-1000 Ljubljana, Slovenia
| | - Ken A. Dill
- Laufer
Center for Physical and Quantitative Biology, Department of Physics and Astronomy, and Department of
Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
7
|
Chacko B, Evans R, Archer AJ. Solvent fluctuations around solvophobic, solvophilic, and patchy nanostructures and the accompanying solvent mediated interactions. J Chem Phys 2017; 146:124703. [DOI: 10.1063/1.4978352] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Blesson Chacko
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Andrew J. Archer
- Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|