1
|
Mittal S, Nisler C, Szostak JW. Simulations predict preferred Mg 2+ coordination in a nonenzymatic primer-extension reaction center. Biophys J 2024; 123:1579-1591. [PMID: 38702884 PMCID: PMC11214020 DOI: 10.1016/j.bpj.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
The mechanism by which genetic information was copied prior to the evolution of ribozymes is of great interest because of its importance to the origin of life. The most effective known process for the nonenzymatic copying of an RNA template is primer extension by a two-step pathway in which 2-aminoimidazole-activated nucleotides first react with each other to form an imidazolium-bridged intermediate that subsequently reacts with the primer. Reaction kinetics, structure-activity relationships, and X-ray crystallography have provided insight into the overall reaction mechanism, but many puzzles remain. In particular, high concentrations of Mg2+ are required for efficient primer extension, but the mechanism by which Mg2+ accelerates primer extension remains unknown. By analogy with the mechanism of DNA and RNA polymerases, a role for Mg2+ in facilitating the deprotonation of the primer 3'-hydroxyl is often assumed, but no catalytic metal ion is seen in crystal structures of the primer-extension complex. To explore the potential effects of Mg2+ binding in the reaction center, we performed atomistic molecular dynamics simulations of a series of modeled complexes in which a Mg2+ ion was placed in the reaction center with inner-sphere coordination with different sets of functional groups. Our simulations suggest that coordination of a Mg2+ ion with both O3' of the terminal primer nucleotide and the pro-Sp nonbridging oxygen of the reactive phosphate of an imidazolium-bridged dinucleotide would help to pre-organize the structure of the primer/template substrate complex to favor the primer-extension reaction. Our results suggest that the catalytic metal ion may play an important role in overcoming electrostatic repulsion between a deprotonated O3' and the reactive phosphate of the bridged dinucleotide and lead to testable predictions of the mode of Mg2+ binding that is most relevant to catalysis of primer extension.
Collapse
Affiliation(s)
- Shriyaa Mittal
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Collin Nisler
- Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts; Howard Hughes Medical Institute, Department of Chemistry, University of Chicago, Chicago, Illinois.
| |
Collapse
|
2
|
Wang K, Yin Z, Sang C, Xia W, Wang Y, Sun T, Xu X. Geometric deep learning for the prediction of magnesium-binding sites in RNA structures. Int J Biol Macromol 2024; 262:130150. [PMID: 38365157 DOI: 10.1016/j.ijbiomac.2024.130150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/24/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Magnesium ions (Mg2+) are essential for the folding, functional expression, and structural stability of RNA molecules. However, predicting Mg2+-binding sites in RNA molecules based solely on RNA structures is still challenging. The molecular surface, characterized by a continuous shape with geometric and chemical properties, is important for RNA modelling and carries essential information for understanding the interactions between RNAs and Mg2+ ions. Here, we propose an approach named RNA-magnesium ion surface interaction fingerprinting (RMSIF), a geometric deep learning-based conceptual framework to predict magnesium ion binding sites in RNA structures. To evaluate the performance of RMSIF, we systematically enumerated decoy Mg2+ ions across a full-space grid within the range of 2 to 10 Å from the RNA molecule and made predictions accordingly. Visualization techniques were used to validate the prediction results and calculate success rates. Comparative assessments against state-of-the-art methods like MetalionRNA, MgNet, and Metal3DRNA revealed that RMSIF achieved superior success rates and accuracy in predicting Mg2+-binding sites. Additionally, in terms of the spatial distribution of Mg2+ ions within the RNA structures, a majority were situated in the deep grooves, while a minority occupied the shallow grooves. Collectively, the conceptual framework developed in this study holds promise for advancing insights into drug design, RNA co-transcriptional folding, and structure prediction.
Collapse
Affiliation(s)
- Kang Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Zuode Yin
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Chunjiang Sang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Wentao Xia
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Yan Wang
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China
| | - Tingting Sun
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310008, China.
| | - Xiaojun Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
3
|
Kolev SK, St. Petkov P, Milenov TI, Vayssilov GN. Sodium and Magnesium Ion Location at the Backbone and at the Nucleobase of RNA: Ab Initio Molecular Dynamics in Water Solution. ACS OMEGA 2022; 7:23234-23244. [PMID: 35847262 PMCID: PMC9280761 DOI: 10.1021/acsomega.2c01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The interactions between Na+ or Mg2+ ions with different parts of single-stranded RNA molecules, namely, the oxygen atoms from the phosphate groups or the guanine base, in water solution have been studied using first-principles molecular dynamics. Sodium ions were found to be much more mobile than Mg2+ ions and readily underwent transitions between a state directly bonded to RNA oxygen atoms and a completely solvated state. The inner solvation shell of Na+ ions fluctuated stochastically at a femtosecond timescale coordinating on average 5 oxygen atoms for bonded Na+ ions and 5.5 oxygen atoms for solvated Na+ ions. In contrast, the inner solvation shell of Mg2+ ions was stable in both RNA-bonded and completely solvated states. In both cases, Mg2+ ions coordinated 6 oxygen atoms from the inner solvation shell. Consistent with their stable solvation shells, Mg2+ ions were more effective than Na+ ions in stabilizing the RNA backbone conformation. The exclusion zones between the first and second solvation shells, solvation shell widths, and angles for binding to carbonyl oxygen of guanine for solvated Na+ or Mg2+ ions exhibited a number of quantitative differences when compared with RNA crystallographic data. The presented results support the distinct capacity of Mg2+ ions to support the RNA structure not only in the crystal phase but also in the dynamic water environment both on the side of the phosphate moiety and on the side of the nucleobase.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Institute
of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784, Bulgaria
| | - Petko St. Petkov
- Faculty
of Chemistry and Pharmacy, University of
Sofia, Boulevard James
Bouchier 1, Sofia 1126, Bulgaria
| | - Teodor I. Milenov
- Institute
of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., Sofia 1784, Bulgaria
| | - Georgi N. Vayssilov
- Faculty
of Chemistry and Pharmacy, University of
Sofia, Boulevard James
Bouchier 1, Sofia 1126, Bulgaria
| |
Collapse
|
4
|
Abstract
AbstractRibozymes are huge complex biological catalysts composed of a combination of RNA and proteins. Nevertheless, there is a reduced number of small ribozymes, the self-cleavage ribozymes, that are formed just by RNA and, apparently, they existed in cells of primitive biological systems. Unveiling the details of these “fossils” enzymes can contribute not only to the understanding of the origins of life but also to the development of new simplified artificial enzymes. A computational study of the reactivity of the pistol ribozyme carried out by means of classical MD simulations and QM/MM hybrid calculations is herein presented to clarify its catalytic mechanism. Analysis of the geometries along independent MD simulations with different protonation states of the active site basic species reveals that only the canonical system, with no additional protonation changes, renders reactive conformations. A change in the coordination sphere of the Mg2+ ion has been observed during the simulations, which allows proposing a mechanism to explain the unique mode of action of the pistol ribozyme by comparison with other ribozymes. The present results are at the center of the debate originated from recent experimental and theoretical studies on pistol ribozyme.
Collapse
|
5
|
Stevens DR, Hammes-Schiffer S. Examining the Mechanism of Phosphite Dehydrogenase with Quantum Mechanical/Molecular Mechanical Free Energy Simulations. Biochemistry 2020; 59:943-954. [PMID: 32031785 DOI: 10.1021/acs.biochem.9b01089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The projected decline of available phosphorus necessitates alternative methods to derive usable phosphate for fertilizer and other applications. Phosphite dehydrogenase oxidizes phosphite to phosphate with the cofactor NAD+ serving as the hydride acceptor. In addition to producing phosphate, this enzyme plays an important role in NADH cofactor regeneration processes. Mixed quantum mechanical/molecular mechanical free energy simulations were performed to elucidate the mechanism of this enzyme and to identify the protonation states of the substrate and product. Specifically, the finite temperature string method with umbrella sampling was used to generate the free energy surfaces and determine the minimum free energy paths for six different initial conditions that varied in the protonation state of the substrate and the position of the nucleophilic water molecule. In contrast to previous studies, the mechanism predicted by all six independent strings is a concerted but asynchronous dissociative mechanism in which hydride transfer from the phosphite substrate to NAD+ occurs prior to attack by the nucleophilic water molecule. His292 is identified as the most likely general base that deprotonates the attacking water molecule. However, Arg237 could also serve as this base if it were deprotonated and His292 were protonated prior to the main chemical transformation, although this scenario is less probable. The simulations indicate that the phosphite substrate is monoanionic in its active form and that the most likely product is dihydrogen phosphate. These mechanistic insights may be helpful for designing mutant enzymes or artificial constructs that convert phosphite to phosphate and NAD+ to NADH more effectively.
Collapse
Affiliation(s)
- David R Stevens
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
6
|
Maurel MC, Leclerc F, Hervé G. Ribozyme Chemistry: To Be or Not To Be under High Pressure. Chem Rev 2019; 120:4898-4918. [DOI: 10.1021/acs.chemrev.9b00457] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISYEB), CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, EPHE, F-75005 Paris, France
| | - Fabrice Leclerc
- Institute for Integrative Biology of the Cell (I2BC), CNRS, CEA, Université Paris Sud, F-91198 Gif-sur-Yvette, France
| | - Guy Hervé
- Laboratoire BIOSIPE, Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Campus Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
7
|
Dans PD, Gallego D, Balaceanu A, Darré L, Gómez H, Orozco M. Modeling, Simulations, and Bioinformatics at the Service of RNA Structure. Chem 2019. [DOI: 10.1016/j.chempr.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Smith LG, Tan Z, Spasic A, Dutta D, Salas-Estrada LA, Grossfield A, Mathews DH. Chemically Accurate Relative Folding Stability of RNA Hairpins from Molecular Simulations. J Chem Theory Comput 2018; 14:6598-6612. [PMID: 30375860 DOI: 10.1021/acs.jctc.8b00633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
To benchmark RNA force fields, we compared the folding stabilities of three 12-nucleotide hairpin stem loops estimated by simulation to stabilities determined by experiment. We used umbrella sampling and a reaction coordinate of end-to-end (5' to 3' hydroxyl oxygen) distance to estimate the free energy change of the transition from the native conformation to a fully extended conformation with no hydrogen bonds between non-neighboring bases. Each simulation was performed four times using the AMBER FF99+bsc0+χOL3 force field, and each window, spaced at 1 Å intervals, was sampled for 1 μs, for a total of 552 μs of simulation. We compared differences in the simulated free energy changes to analogous differences in free energies from optical melting experiments using thermodynamic cycles where the free energy change between stretched and random coil sequences is assumed to be sequence-independent. The differences between experimental and simulated ΔΔ G° are, on average, 0.98 ± 0.66 kcal/mol, which is chemically accurate and suggests that analogous simulations could be used predictively. We also report a novel method to identify where replica free energies diverge along a reaction coordinate, thus indicating where additional sampling would most improve convergence. We conclude by discussing methods to more economically perform these simulations.
Collapse
Affiliation(s)
- Louis G Smith
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Zhen Tan
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Aleksandar Spasic
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Debapratim Dutta
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| | - Leslie A Salas-Estrada
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - Alan Grossfield
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States
| | - David H Mathews
- Department of Biochemistry & Biophysics , University of Rochester , Rochester , New York 14642 , United States.,Department of Biostatistics and Computational Biology , University of Rochester , Rochester , New York 14642 , United States.,Center for RNA Biology , University of Rochester , Rochester , New York 14642 , United States
| |
Collapse
|
9
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
10
|
Mlýnský V, Bussi G. Exploring RNA structure and dynamics through enhanced sampling simulations. Curr Opin Struct Biol 2018; 49:63-71. [PMID: 29414513 DOI: 10.1016/j.sbi.2018.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided.
Collapse
Affiliation(s)
- Vojtěch Mlýnský
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati, SISSA, via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
11
|
Bingaman JL, Zhang S, Stevens DR, Yennawar NH, Hammes-Schiffer S, Bevilacqua PC. The GlcN6P cofactor plays multiple catalytic roles in the glmS ribozyme. Nat Chem Biol 2017; 13:439-445. [PMID: 28192411 PMCID: PMC5362308 DOI: 10.1038/nchembio.2300] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/09/2016] [Indexed: 01/06/2023]
Abstract
RNA enzymes (ribozymes) have remarkably diverse biological roles despite having limited chemical diversity. Protein enzymes enhance their reactivity through recruitment of cofactors; likewise, the naturally occurring glmS ribozyme uses the glucosamine-6-phosphate (GlcN6P) organic cofactor for phosphodiester bond cleavage. Prior structural and biochemical studies have implicated GlcN6P as the general acid. Here we describe new catalytic roles of GlcN6P through experiments and calculations. Large stereospecific normal thio effects and a lack of metal-ion rescue in the holoribozyme indicate that nucleobases and the cofactor play direct chemical roles and align the active site for self-cleavage. Large stereospecific inverse thio effects in the aporibozyme suggest that the GlcN6P cofactor disrupts an inhibitory interaction of the nucleophile. Strong metal-ion rescue in the aporibozyme reveals that this cofactor also provides electrostatic stabilization. Ribozyme organic cofactors thus perform myriad catalytic roles, thereby allowing RNA to compensate for its limited functional diversity.
Collapse
Affiliation(s)
- Jamie L. Bingaman
- Department of Chemistry and Center for RNA Molecular
Biology, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
| | - Sixue Zhang
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - David R. Stevens
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Neela H. Yennawar
- X-ray Crystallography Facility, Huck Institutes of the Life
Sciences, The Pennsylvania State University, 8 Althouse Laboratory, University Park,
Pennsylvania 16802, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, University of Illinois at
Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular
Biology, The Pennsylvania State University, University Park, Pennsylvania 16802,
United States
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, Pennsylvania 16802, United
States
| |
Collapse
|