2
|
Wortmann S, Schloeglmann S, Nuernberger P. Sensitivity of Isomerization Kinetics of 1,3,5-Triphenylformazan on Cosolvents Added to Toluene. J Org Chem 2021; 87:1745-1755. [PMID: 34843237 DOI: 10.1021/acs.joc.1c01928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formazan molecules exhibit photochromism because isomerization processes following excitation may occur in both the azo group and the hydrazone group; thus, each formazan may be present in various forms with different colors. The ratio of these forms depends on the illumination conditions and the environment of the formazan with a most incisive sensibility of the thermal anti-syn relaxation of the C═N toward slight traces of impurities in toluene solutions, as reported most prominently for 1,3,5-triphenylformazan. Here, we study the latter compound with transient absorption spectroscopy to investigate the role of these traces by adding small amounts of both protic and aprotic cosolvents. Whereas the activation barrier decreases if the binary solvent mixture has a higher polarity, the role of hydrogen bonding can have a reverse impact on the thermal isomerization rate. Both the addition of an aprotic cosolvent and the addition of a protic cosolvent can slow the reaction due to their hydrogen-bond accepting and hydrogen-bond donating properties, respectively. In the case of methanol as a cosolvent, this effect outweighed that of the polarity increase for small concentrations, which was not observed for the fluorinated alcohol hexafluoroisopropanol. The results are explained in the context of a competition between solute-cosolvent and cosolvent-cosolvent hydrogen bonding.
Collapse
Affiliation(s)
- Svenja Wortmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Sylvia Schloeglmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
4
|
Patel N, Arfeen M, Singh T, Bhagat S, Sakhare A, Bharatam PV. Divalent N I Compounds: Identifying new Carbocyclic Carbenes to Design Nitreones using Quantum Chemical Methods. J Comput Chem 2020; 41:2624-2633. [PMID: 32964506 DOI: 10.1002/jcc.26417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 11/05/2022]
Abstract
Nitreones are compounds with oxidation state 1 at the nitrogen, these compounds carry formal positive charge as well as two lone pairs of electrons at nitrogen center. These compounds are also known as divalent NI compounds and can be represented with the general formula L → N+ ← L, where L is an electron donating ligand. In the recent past, several divalent NI compounds have been reported with L = N-heterocyclic carbene (NHC), remote N-heterocyclic carbene (rNHC), carbocyclic carbene (CCC) and diaminocarbene. Recently, our group reported that a novel six-membered CCC (cyclohexa-2,5-diene-4-[diaminomethynyl]-1-ylidene) can stabilize N+ center in nitreones. As an independent carbene, this species is very unstable. In this work, modulation of this CCC using (a) annulation, (b) heterocyclic ring modification, (c) substitutions adjacent to the carbenic carbon, (d) exocyclic double bond insertion and (e) ring contraction, has been reported. These modulations and quantum chemical analyses helped in the identification of five new six-membered CCCs which carry improved donation and stability properties. Further, these CCCs were employed in the design of new divalent NI compounds (nitreones) which carry coordination bonds between ligands and N+ center. The molecular and electronic structure properties, and the donor→acceptor coordination interactions present in the resultant low oxidation state divalent NI compounds have been explored.
Collapse
Affiliation(s)
- Neha Patel
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
- Biocon Bristol-Myers Squibb R&D Center (BBRC), Syngene International Ltd., Bengaluru, Karnataka, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Ajay Sakhare
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| |
Collapse
|
6
|
Frank MS, Schmitz G, Hättig C. Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques. J Chem Phys 2020; 153:034109. [PMID: 32716174 DOI: 10.1063/5.0012597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a pair natural orbital (PNO)-based implementation of CC3 excitation energies, which extends our previously published state-specific PNO ansatz for the solution of the excited state eigenvalue problem to methods including connected triple excitations. A thorough analysis of the equations for the excited state triples amplitudes is presented from which we derive a suitable state-specific triple natural orbital basis for the excited state triples amplitudes, which performs equally well for local and non-local excitations. The accuracy of the implementation is evaluated using a large and diverse test set. We find that for states with small contributions from double excitations, a T0 approximation to PNO-CC3 yields accurate results with a mean absolute error (MAE) for TPNO = 10-7 in the range of 0.02 eV. However, for states with larger double excitation contributions, the T0 approximation is found to yield significantly less accurate results, while the Laplace-transformed variant of PNO-CC3 shows a uniform accuracy for singly and doubly excited states (MAE and maximum error of 0.01 eV and 0.07 eV for TPNO = 10-7, respectively). Finally, we apply PNO-CC3 to the calculation of the first excited state of berenil at a S1 minimum geometry, which is shown to be close to a conical intersection. This calculation in the aug-cc-pVTZ basis set (more than 1300 basis functions) is the largest calculation ever performed with CC3 on excitation energies.
Collapse
Affiliation(s)
- Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Gunnar Schmitz
- Deparment of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
7
|
Balasubramani SG, Chen GP, Coriani S, Diedenhofen M, Frank MS, Franzke YJ, Furche F, Grotjahn R, Harding ME, Hättig C, Hellweg A, Helmich-Paris B, Holzer C, Huniar U, Kaupp M, Marefat Khah A, Karbalaei Khani S, Müller T, Mack F, Nguyen BD, Parker SM, Perlt E, Rappoport D, Reiter K, Roy S, Rückert M, Schmitz G, Sierka M, Tapavicza E, Tew DP, van Wüllen C, Voora VK, Weigend F, Wodyński A, Yu JM. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J Chem Phys 2020; 152:184107. [PMID: 32414256 PMCID: PMC7228783 DOI: 10.1063/5.0004635] [Citation(s) in RCA: 656] [Impact Index Per Article: 131.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/07/2020] [Indexed: 01/30/2023] Open
Abstract
TURBOMOLE is a collaborative, multi-national software development project aiming to provide highly efficient and stable computational tools for quantum chemical simulations of molecules, clusters, periodic systems, and solutions. The TURBOMOLE software suite is optimized for widely available, inexpensive, and resource-efficient hardware such as multi-core workstations and small computer clusters. TURBOMOLE specializes in electronic structure methods with outstanding accuracy-cost ratio, such as density functional theory including local hybrids and the random phase approximation (RPA), GW-Bethe-Salpeter methods, second-order Møller-Plesset theory, and explicitly correlated coupled-cluster methods. TURBOMOLE is based on Gaussian basis sets and has been pivotal for the development of many fast and low-scaling algorithms in the past three decades, such as integral-direct methods, fast multipole methods, the resolution-of-the-identity approximation, imaginary frequency integration, Laplace transform, and pair natural orbital methods. This review focuses on recent additions to TURBOMOLE's functionality, including excited-state methods, RPA and Green's function methods, relativistic approaches, high-order molecular properties, solvation effects, and periodic systems. A variety of illustrative applications along with accuracy and timing data are discussed. Moreover, available interfaces to users as well as other software are summarized. TURBOMOLE's current licensing, distribution, and support model are discussed, and an overview of TURBOMOLE's development workflow is provided. Challenges such as communication and outreach, software infrastructure, and funding are highlighted.
Collapse
Affiliation(s)
- Sree Ganesh Balasubramani
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Guo P Chen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Sonia Coriani
- DTU Chemistry, Technical University of Denmark, Kemitorvet Build. 207, DK-2800 Kongens Lyngby, Denmark
| | - Michael Diedenhofen
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Yannick J Franzke
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Robin Grotjahn
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | | | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Arnim Hellweg
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Christof Holzer
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Uwe Huniar
- Dassault Systèmes Deutschland GmbH, Imbacher Weg 46, 51379 Leverkusen, Germany
| | - Martin Kaupp
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Alireza Marefat Khah
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | - Thomas Müller
- Forschungszentrum Jülich, Jülich Supercomputer Centre, Wilhelm-Jonen Straße, 52425 Jülich, Germany
| | - Fabian Mack
- Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), KIT Campus South, P.O. Box 6980, 76049 Karlsruhe, Germany
| | - Brian D Nguyen
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Shane M Parker
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Eva Perlt
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Dmitrij Rappoport
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Kevin Reiter
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Saswata Roy
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| | - Matthias Rückert
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, Langelandsgade 140, DK-8000 Aarhus, Denmark
| | - Marek Sierka
- TURBOMOLE GmbH, Litzenhardtstraße 19, 76135 Karlsruhe, Germany
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, USA
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstaße 1, 70569 Stuttgart, Germany
| | - Christoph van Wüllen
- Fachbereich Chemie and Forschungszentrum OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Staße 52, 67663 Kaiserslautern, Germany
| | - Vamsee K Voora
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Florian Weigend
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), KIT Campus North, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Artur Wodyński
- Institut für Chemie, Theoretische Chemie/Quantenchemie, Technische Universität Berlin, Sekr. C7, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jason M Yu
- Department of Chemistry, University of California, Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, USA
| |
Collapse
|
8
|
Otolski CJ, Mohan Raj A, Ramamurthy V, Elles CG. Ultrafast Dynamics of Encapsulated Molecules Reveals New Insight on the Photoisomerization Mechanism for Azobenzenes. J Phys Chem Lett 2019; 10:121-127. [PMID: 30563336 DOI: 10.1021/acs.jpclett.8b03070] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Spatial confinement can have a profound impact on the dynamics of chemical reactions, especially for isomerization reactions that involve large-amplitude structural rearrangement of a molecule. This work uses ultrafast spectroscopy to probe the effects of confinement on trans → cis photoisomerization following ππ* excitation of 4-propyl stilbene and 4-propyl azobenzene encapsulated in a supramolecular host-guest complex. Transient absorption spectroscopy of the encapsulated azobenzene derivative reveals the formation of two distinct excited-state species with spectral signatures resembling the cis and trans isomers. Formation of the cis species indicates a direct excited-state isomerization channel that is not observed in cyclohexane solution. Comparison with the stilbene analogue suggests that this "hot" excited-state isomerization pathway for encapsulated azobenzene involves primarily in-plane inversion, whereas a 10-fold increase of the excited-state lifetime for the trans isomer suggests that crowding in the capsule hinders isomerization from the relaxed S1 geometry of the trans isomer. This work provides new mechanistic insight on the relative roles of inversion and rotation in the ultrafast photoisomerization of azobenzene derivatives.
Collapse
Affiliation(s)
- Christopher J Otolski
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| | - A Mohan Raj
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Christopher G Elles
- Department of Chemistry , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|