1
|
Tasi DA, Orján EM, Czakó G. Benchmark Ab Initio Mapping of the F - + CH 2ClI S N2 and Proton-Abstraction Reactions. J Phys Chem A 2024; 128:10568-10578. [PMID: 39621865 DOI: 10.1021/acs.jpca.4c06716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The experimental and theoretical studies of gas-phase SN2 reactions have significantly broadened our understanding of the mechanisms governing even the simplest chemical processes. These investigations have not only advanced our knowledge of reaction pathways but also provided critical insights into the fundamental dynamics of chemical systems. Nevertheless, in the case of the prototypical X- + CH3Y → Y- + CH3X [X, Y = F, Cl, Br, and I] SN2 reactions, the effect of the additional halogenation of CH3Y has not been thoroughly explored. Thus, here, we perform the first high-level ab initio characterization of the F- + CH2ClI SN2 and proton-abstraction reactions utilizing the explicitly-correlated CCSD(T)-F12b method. Two possible SN2 channels leading to the Cl- + CH2FI and I- + CH2FCl products are distinguished, in which we investigate four different pathways of back-side attack Walden inversion, front-side attack, double inversion, and halogen-bonded complex formation. In order to obtain the benchmark energies of the geometries of the stationary points, determined at the CCSD(T)-F12b/aug-cc-pVTZ level of theory, additional computations are carried out considering the basis set effects, post-CCSD(T) correlations, and core corrections. Using the benchmark data, we assess the accuracy of the MP2, DF-MP2, MP2-F12, and DF-MP2-F12 methods as well. By comparing the present F- + CH2ClI system with the corresponding F- + CH3Y [Y = Cl and I] reactions, this study demonstrates that further halogenation of CH3Y significantly promotes the corresponding proton-abstraction and SN2 retention channels as well as the halogen-bonded complex formation, and as a consequence, the traditional back-side attack Walden-inversion mechanism becomes less pronounced.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Erik M Orján
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület "Momentum" Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Szeged H-6720, Hungary
| |
Collapse
|
2
|
Wu X, Ying F, Wang H, Yang L, Zhang J, Xie J. Roundabout Mechanism of Ion-Molecule Nucleophilic Substitution Reactions. ACS PHYSICAL CHEMISTRY AU 2024; 4:581-592. [PMID: 39634634 PMCID: PMC11613305 DOI: 10.1021/acsphyschemau.4c00061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024]
Abstract
Roundabout (RA) is an important indirect mechanism for gas-phase X- + CH3Y → XCH3 + Y- SN2 reactions at a high collision energy. It refers to the rotation of the CH3-group by half or multiple circles upon the collision of incoming nucleophiles before substitution takes place. The RA mechanism was first discovered in the Cl- + CH3I SN2 reaction to explain the energy transfer observed in crossed molecular beam imaging experiments in 2008. Since then, the RA mechanism and its variants have been observed not only in multiple C-centered SN2 reactions, but also in N-centered SN2 reactions, proton transfer reactions, and elimination reactions. This work reviewed recent studies on the RA mechanism and summarized the characteristics of RA mechanisms in terms of variant types, product energy partitioning, and product velocity scattering angle distribution. RA mechanisms usually happen at small impact parameters and tend to couple with other mechanisms at relatively low collision energy, and the available energy of roundabout trajectories is primarily partitioned to internal energy. Factors that affect the importance of the RA mechanism were analyzed, including the type of leaving group and nucleophile, collision energy, and microsolvation. A massive leaving group and relatively high collision energy are prerequisite for the occurrence of the roundabout mechanism. Interestingly, when reacting with CH3I, the importance of RA mechanisms follows an order of Cl- > HO- > F-, and such a nucleophile dependence was attributed to the difference in proton affinity and size of the nucleophile.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fei Ying
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hongyi Wang
- State
Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory
of Critical Materials Technology for New Energy Conversion and Storage,
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Li Yang
- State
Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory
of Critical Materials Technology for New Energy Conversion and Storage,
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School
of Chemistry and Chemical Engineering, Yili
Normal University, Yining 835000, China
| | - Jiaxu Zhang
- State
Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory
of Critical Materials Technology for New Energy Conversion and Storage,
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School
of Chemistry and Chemical Engineering, Yili
Normal University, Yining 835000, China
| | - Jing Xie
- Key
Laboratory of Cluster Science of Ministry of Education, Beijing Key
Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Wu X, Bickelhaupt FM, Xie J. Solvent-induced dual nucleophiles and the α-effect in the S N2 versus E2 competition. Phys Chem Chem Phys 2024; 26:11320-11330. [PMID: 38536735 PMCID: PMC11022550 DOI: 10.1039/d4cp00671b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024]
Abstract
We have quantum chemically investigated how microsolvation affects the various E2 and SN2 pathways, their mutual competition, and the α-effect of the model reaction system HOO-(H2O)n + CH3CH2Cl, at the CCSD(T) level. Interestingly, we identify the dual nature of the α-nucleophile HOO- which, upon solvation, is in equilibrium with HO-. This solvent-induced dual appearance gives rise to a rich network of competing reaction channels. Among both nucleophiles, SN2 is always favored over E2, and this preference increases upon increasing microsolvation. Furthermore, we found a pronounced α-effect, not only for SN2 substitution but also for E2 elimination, i.e., HOO- is more reactive than HO- in both cases. Our activation strain and quantitative molecular orbital analyses reveal the physical mechanisms behind the various computed trends. In particular, we demonstrate that two recently proposed criteria, required for solvent-free nucleophiles to display the α-effect, must also be satisfied by microsolvated HOO-(H2O)n nucleophiles.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands.
- Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
4
|
Wu X, Hu Y, Zhang S, Xie J. Shapeshifting Nucleophiles HO -(NH 3) n React with Methyl Chloride. J Phys Chem A 2024; 128:2556-2564. [PMID: 38530765 DOI: 10.1021/acs.jpca.3c07553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The microsolvated anions HO-(NH3)n were found to induce new nucleophile NH2-(H2O)(NH3)n-1 via intramolecular proton transfer. Hence, the ion-molecule nucleophilic substitution (SN2) reaction between CH3Cl and these shapeshifting nucleophiles lead to both the HO- path and NH2- path, meaning that the respective attacking nucleophile is HO- or NH2-. The CCSD(T) level of calculation was performed to characterize the potential energy surfaces. Calculations indicate that the HO- species are lower in energy than the NH2- species, and the SN2 reaction barriers are lower for the HO- path than the NH2--path. Incremental solvation increases the barrier for both paths. Comparison between HO-(NH3)n and HOO-(NH3)n confirmed the existence of an α-effect under microsolvated conditions. Comparison between HO-(NH3)n and HO-(H2O)n indicated that the more polarized H2O stabilizes the nucleophiles more than NH3, and thus, the hydrated systems have higher SN2 reaction barriers. The aforementioned barrier changes can be explained by the differential stabilization of the nucleophile and HOMO levels upon solvation, thus affecting the HOMO-LUMO interaction between the nucleophile and substrate. For the same kind of nucleophilic attacking atom, O or N, the reaction barrier has a good linear correlation with the HOMO level of the nucleophiles. Hence, the HOMO level or the binding energy of microsolvated nucleophiles is a good indicator to evaluate the order of barrier heights. This work expands our understanding of the microsolvation effect on prototype SN2 reactions beyond the water solvent.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yang Hu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Liu X, Feng H, Li R, Zhang Q, Wu Y, Pang B. Mechanistic Insights into the Proton Transfer and Substitution Dynamics of N-Atom Center Reactions: A Study of CH 3O - with NH 2Cl. J Phys Chem A 2024. [PMID: 38502933 DOI: 10.1021/acs.jpca.3c08447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Bimolecular substitution reactions involving N as the central atom have continuously improved our understanding of substitution dynamics. This work used chemical dynamics simulations to investigate the dynamics of NH2Cl with N as the central atom and the multiatomic nucleophile CH3O- and compared these results with the F- + NH2Cl reaction. The most noteworthy difference is in the competition between proton transfer (PT) and the SN2 pathways. Our results demonstrate that, for the CH3O- + NH2Cl system, the PT pathway is considerably more favorable than the SN2 pathway. In contrast, no PT pathway was observed for the F- + NH2Cl system at room temperature. This can be attributed to the exothermic reaction of the PT pathway for the CH3O- + NH2Cl reaction and is coupled with a more stable transition state compared to the substitution pathway. Furthermore, the bulky nature of the CH3O- group impedes its participation in SN2 reactions, which enhances both the thermodynamic and the dynamic advantages of the PT reaction. Interestingly, the atomic mechanism reveals that the PT pathway is primarily governed by indirect mechanisms, similar to the SN2 pathway, with trajectories commonly trapped in the entrance channel being a prominent feature. These trajectories are often accompanied by prolonged and frequent proton exchange or proton abstraction processes. This current work provides insights into the dynamics of N-centered PT reactions, which are useful in gaining a comprehensive understanding of the dynamics behavior of similar reactions.
Collapse
Affiliation(s)
- Xu Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Huining Feng
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Rui Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Qiuju Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Yang Wu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Boxue Pang
- Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
| |
Collapse
|
6
|
Wu X, Zhao C, Zhang S, Xie J. Shapeshifting Nucleophile Singly Hydrated Hydroperoxide Anion Leads to the Occurrence of the Thermodynamically Unfavored S N2 Product. J Phys Chem A 2024. [PMID: 38477711 DOI: 10.1021/acs.jpca.4c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Single water molecules alone may introduce unusual features into the kinetics and dynamics of chemical reactions. The singly hydrated hydroperoxide anion, HOO-(H2O), was found to be a shapeshifting nucleophile, which can be transformed to HO- solvated by hydrogen peroxide HO-(HOOH). Herein, we performed direct dynamics simulations of its reaction with methyl iodide to investigate the effect of individual water molecules. In addition to the normal SN2 product CH3OOH, the thermodynamically unfavored proton transfer-induced HO--SN2 path (produces CH3OH) was also observed, contributing ∼4%. The simulated branching ratio of the HO--SN2 path exceeded the statistical estimation (0.6%) based on the free energy barrier difference. The occurrence of the HO--SN2 path was attributed to the shallow entrance channel well before a submerged saddle point, thus providing a region for extensive proton exchange and ultimately leading to the formation of CH3OH. In comparison, changing the leaving group from Cl to I increased the overall reaction rate as well as the proportion of the HO--SN2 path because the CH3I system has a smaller internal barrier. This work elucidates the importance of the dynamic effect introduced by a single solvent molecule to alter the product channel and kinetics of typical ion-molecule SN2 reactions.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chongyang Zhao
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
7
|
Song Z, Liang C, Gong K, Zhao S, Yuan X, Zhang X, Xie J. Harnessing the High Interfacial Electric Fields on Water Microdroplets to Accelerate Menshutkin Reactions. J Am Chem Soc 2023; 145:26003-26008. [PMID: 38011046 DOI: 10.1021/jacs.3c11650] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Even though it is still an emerging field, the application of a high external electric field (EEF) as a green and efficient catalyst in synthetic chemistry has recently received significant attention for the ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Here, we extend the application of the EEF to Menshutkin reactions by taking advantage of the spontaneous high electric field at the air-water interfaces of sprayed water microdroplets. Experimentally, a series of Menshutkin reactions were accelerated by 7 orders of magnitude. Theoretically, both density functional theory calculations and ab initio molecular dynamics simulations predict that the reaction barrier decreases significantly in the presence of oriented external electric fields, thereby supporting the notion that the electric fields in the water droplets are responsible for the catalysis. In addition, the ordered solvent and reactant molecules oriented by the electric field alleviate the steric effect of solvents and increase the successful collision rates, thus facilitating faster nucleophilic attack. The success of Menshutkin reactions in this study showcases the great potential of microdroplet chemistry for green synthesis.
Collapse
Affiliation(s)
- Zhexuan Song
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chiyu Liang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Ke Gong
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Supin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Fu B, Zhang DH. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces. Natl Sci Rev 2023; 10:nwad321. [PMID: 38274241 PMCID: PMC10808953 DOI: 10.1093/nsr/nwad321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/27/2024] Open
Abstract
Highly accurate potential energy surfaces are critically important for chemical reaction dynamics. The large number of degrees of freedom and the intricate symmetry adaption pose a big challenge to accurately representing potential energy surfaces (PESs) for polyatomic reactions. Recently, our group has made substantial progress in this direction by developing the fundamental invariant-neural network (FI-NN) approach. Here, we review these advances, demonstrating that the FI-NN approach can represent highly accurate, global, full-dimensional PESs for reactive systems with even more than 10 atoms. These multi-channel reactions typically involve many intermediates, transition states, and products. The complexity and ruggedness of this potential energy landscape present even greater challenges for full-dimensional PES representation. These PESs exhibit a high level of complexity, molecular size, and accuracy of fit. Dynamics simulations based on these PESs have unveiled intriguing and novel reaction mechanisms, providing deep insights into the intricate dynamics involved in combustion, atmospheric, and organic chemistry.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhao S, Fu G, Zhen W, Wang H, Yang L, Zhang J. Competitive dynamics of E2 and S N2 reaction driven by collision energy and leaving group. Phys Chem Chem Phys 2023; 25:28086-28093. [PMID: 37817676 DOI: 10.1039/d3cp03832g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The competition between E2 and SN2 reactions is essential in organic chemistry. In this paper, the reaction mechanism of F- + CH3CH2Cl is investigated utilizing direct dynamics simulations, and unravel how the collision energy (Ecoll) and the leaving group affect the competition between SN2 and E2 in the F- + CH3CH2Y (Y = Cl and Br) reactions. Simulation results for F- + CH3CH2Cl reaction show that the anti-E2 channel is dominant, but with the increase of Ecoll from 0.04 to 1.9 eV the branching ratio of the anti-E2 pathway significantly decreases by 21%, and the SN2 pathway becomes more important. A transition from indirect to direct reaction has been revealed when Ecoll is increased from 0.04 to 1.90 eV. At lower Ecoll, a large ratio of indirect events occurs via a long-lived hydrogen-bonded complex, and as the collision energy is increased, the lifetimes of the hydrogen-bonded complexes are shortened, due to an initial faster relative velocity. The simulation results of F- + CH3CH2Cl are further compared with the F- + CH3CH2Br reaction at Ecoll of 0.04 eV. Changing the leaving group from Cl to Br drastically suppresses the indirect events of anti-E2 with a branching ratio decreasing from 0.46 to 0.36 due to the mass effect, and promotes direct rebound mechanism resulting from a looser transition state geometry caused by varied electronegativity.
Collapse
Affiliation(s)
- Siwei Zhao
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gang Fu
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Wenqing Zhen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Hongyi Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Li Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Jiaxu Zhang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| |
Collapse
|
10
|
Liu R, Zhang Z, Yan L, Yang X, Zhu Y, Su P, Song H, Wang Z. The Influence of Hydrogen Bonds on the Roaming Reaction. J Phys Chem Lett 2023; 14:9351-9356. [PMID: 37820388 DOI: 10.1021/acs.jpclett.3c02133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Roaming bypasses the conventional transition state and is a significant reaction pathway due to the unusual energy distributions of its products; however, its reaction pathway under external environmental interactions remains unclear. Herein, we report for the first time the roaming process of nitrobenzene, which is influenced by the hydrogen bonds (H-bonds) between nitro- and phenyl radicals and water molecules in the gas phase. Notably, despite the fact that the single water structure produces a higher but narrower barrier, whereas the double water structure leads to a lower but wider barrier, the roaming reaction still occurs. The underlying mechanism responsible for these influences of H-bonds is ascribed to the dramatically changed polarization and correlation interactions between the roaming radicals. The reaction rates and thermal perturbation probabilities are also remarkably influenced due to the presence of the H-bonds, by approximately 2 orders of magnitude. It is anticipated that this work will encourage the promising feasibility of introducing environmental molecules to modulate the roaming reaction.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiyuan Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longxiang Yan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huajie Song
- Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Zhigang Wang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
11
|
Saha A, Narula K, Mishra P, Biswas G, Bhakta S. A facile cost-effective electrolyte-assisted approach and comparative study towards the Greener synthesis of silica nanoparticles. NANOSCALE ADVANCES 2023; 5:1386-1396. [PMID: 36866261 PMCID: PMC9972527 DOI: 10.1039/d2na00872f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, silica nanoparticles are gaining tremendous importance because of their wide applications across different domains such as drug delivery, chromatography, biosensors, and chemosensors. The synthesis of silica nanoparticles generally requires a high percentage composition of organic solvent in an alkali medium. The eco-friendly synthesis of silica nanoparticles in bulk amounts can help save the environment and is cost-effective. Herein, efforts have been made to minimize the concentration of organic solvents used during synthesis via the addition of a low concentration of electrolytes, e.g., NaCl. The effects of electrolytes and solvent concentrations on nucleation kinetics, particle growth, and particle size were investigated. Ethanol was used as a solvent in various concentrations, ranging from 60% to 30%, and to optimize and validate the reaction conditions, isopropanol and methanol were also utilized as solvents. The concentration of aqua-soluble silica was determined using the molybdate assay to establish reaction kinetics, and this approach was also utilized to quantify the relative concentration changes in particles throughout the synthesis. The prime feature of the synthesis is the reduction in organic solvent usage by up to 50% using 68 mM NaCl. The surface zeta potential was reduced after the addition of an electrolyte, which made the condensation process faster and helped reaching the critical aggregation concentration in a shorter time. The effect of temperature was also monitored, and we obtained homogeneous and uniform nanoparticles by increasing the temperature. We found that it is possible to tune the size of the nanoparticles by changing the concentration of electrolytes and the temperature of the reaction using an eco-friendly approach. The overall cost of the synthesis can also be reduced by ∼35% by adding electrolytes.
Collapse
Affiliation(s)
- Arighna Saha
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
- Department of Chemistry, Cooch Behar College Cooch Behar West Bengal India 736101
| | - Kritika Narula
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi India 110016
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi New Delhi India 110016
| | - Goutam Biswas
- Department of Chemistry, Cooch Behar Panchanan Barma University Cooch Behar West Bengal India 736101
| | - Snehasis Bhakta
- Department of Chemistry, Cooch Behar College Cooch Behar West Bengal India 736101
| |
Collapse
|
12
|
Yu F. Origin of the Microsolvation Effect on the Central Barriers of S N2 Reactions. J Phys Chem A 2022; 126:4342-4348. [PMID: 35785958 DOI: 10.1021/acs.jpca.2c01677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have quantitatively analyzed the microsolvation effect on the central barriers of microsolvated bimolecular nucleophilic substitution (SN2) reactions by means of a two-step energy decomposition procedure. According to the first energy decompositions, an obvious increase in the central barrier for a microsolvated SN2 reaction against its unsolvated counterpart can be mainly ascribed to the fact that the interaction between the solute and the conjunct solvent becomes less attractive from the reactant complex to the transition state. On the basis of the second energy decompositions with symmetry-adapted perturbation theory, this less attractive interaction in the transition state is primarily due to the interplay of the changes in the electrostatic, exchange, and induction components. However, the contribution of the change for the dispersion component is relatively small. A distinct linear correlation has also been observed between the changes of the total interaction energies and those of the corresponding electrostatic components for the microsolvated SN2 reactions studied in this work. Moreover, the two-step energy decomposition procedure employed in this work is expected to be extensively applied to the gas phase reactions mediated by molecules or clusters.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Freshmen, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
13
|
Lu X, Li L, Zhang X, Fu B, Xu X, Zhang DH. Dynamical Effects of S N2 Reactivity Suppression by Microsolvation: Dynamics Simulations of the F -(H 2O) + CH 3I Reaction on a 21-Dimensional Potential Energy Surface. J Phys Chem Lett 2022; 13:5253-5259. [PMID: 35674277 DOI: 10.1021/acs.jpclett.2c01323] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A comparison of atomistic dynamics between microsolvated and unsolvated reactions can expose the precise role of solvent molecules and thus provide deep insight into how solvation influences chemical reactions. Here we developed the first full-dimensional analytical potential energy surface of the F-(H2O) + CH3I reaction, which facilitates the efficient dynamics simulations on a quantitatively accurate level. The computed SN2 reactivity suppression ratio of the monosolvated F-(H2O) + CH3I reaction relative to the unsolvated F- + CH3I reaction as a function of collision energy first increases and then decreases steadily, forming an inverted-V shape, due to the combined dynamical effects of interaction time, steric hindrance, and collision-induced dehydration. Moreover, further analysis reveals that the steric effect of the F-(H2O) + CH3I reaction resulting from the single water molecule is manifested mainly in dragging the F- anion away from the central C atom, rather than shielding F- from C. Our study shows there is great potential in rigorously studying the role of the solvent in more complicated reactions.
Collapse
Affiliation(s)
- Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lulu Li
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoren Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xin Xu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
14
|
Wu X, Zhang S, Xie J. Investigating the competing E2 and S N2 mechanisms for the microsolvated HO -(H 2O) n=0-4 + CH 3CH 2X (X = Cl, Br, I) reactions. Phys Chem Chem Phys 2022; 24:12993-13005. [PMID: 35582984 DOI: 10.1039/d1cp04010c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We characterized the anti-E2, syn-E2, inv-SN2, and ret-SN2 reaction channels for the reaction of microsolvated HO-(H2O)n anions with CH3CH2X (X = Cl, Br, I), using the CCSD(T)/PP/t//MP2/ECP/d level method, to understand how a solvent influences the competing E2 and SN2 reactions. The calculated sequence of barrier for the four channels is ret-SN2 > syn-E2 > anti-E2 > inv-SN2. The barrier heights increase with incremental hydration as the system transfers from the gas phase to microsolvation, and to bulk solvation (using the PCM implicit solvent model). As the degree of hydration n increases, good correlations have been found between barrier heights and several thermodynamic, geometric and charge parameters, including the reaction enthalpy, proton/ethyl-cation affinity of the hydrated nucleophile, geometric looseness (%L‡) and asymmetry (%AS‡) and charge asymmetry (Δq(X-O)) of the transition structures. Under a molecular orbital scheme, the HOMOs of nucleophiles are stabilized by stepwise hydration, explaining the rise in the barriers. Considering the effect of the leaving group, the barrier heights exhibit linear correlation with the halogen electronegativity and H-acidity of substrate CH3CH2X. In terms of E2/SN2 competition, the barrier difference, , first increases then decreases as the number of explicit water molecules increases, under both microsolvation and bulk solvation conditions, but the inv-SN2 pathway is always favored over the anti-E2 pathway. Energy decomposition analysis attributes the increase of barrier difference to the greater geometric distortion in the anti-E2 transition structure.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Shaowen Zhang
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
15
|
Valverde D, Georg HC, Canuto S. Free-Energy Landscape of the S N2 Reaction CH 3Br + Cl - → CH 3Cl + Br - in Different Liquid Environments. J Phys Chem B 2022; 126:3685-3692. [PMID: 35543431 DOI: 10.1021/acs.jpcb.1c10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work describes in detail the reaction path of the well-known SN2 reaction CH3Br + Cl- → CH3Cl + Br-, whose reaction rate has a huge variation with the solvent in the gas phase and in protic and aprotic liquid environments. We employed the ASEC-FEG method to optimize for minima (reactants and products) and saddle points (transition states) in the in-solution free-energy hypersurface. The method takes atomistic details of the solvent into account. A polarizable continuum model (PCM) has also been employed for comparison. The most perceptive structural changes are noted in aqueous solution by using the ASEC-FEG approach. The activation energies in all solvents, estimated by means of free-energy perturbation calculations, are in good agreement with the experimental data. The total solute-solvent hydrogen bonds play an important role in the increased barrier height observed in water and are therefore crucial to explain the huge decrease in the kinetic constant. It is also found that the hydration shell around the ions breaks itself spontaneously to accommodate the molecule, thus forming minimum energy complexes.
Collapse
Affiliation(s)
- Danillo Valverde
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 Cidade Universitária, CEP 05508-090 São Paulo, São Paulo, Brazil
| | - Herbert C Georg
- Instituto de Física, Universidade Federal de Goiás, Avenida Esperança, Campus Samambaia, CEP 74690-900 Goiânia, Goiás, Brazil
| | - Sylvio Canuto
- Instituto de Física, Universidade de São Paulo, Rua do Matão 1371 Cidade Universitária, CEP 05508-090 São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Nogueira D, Oliveira RR, Rocha AB. Microsolvation effect on chlorination reaction of simple alcohols. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Diogo Nogueira
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Ricardo R. Oliveira
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| | - Alexandre B. Rocha
- Instituto de Química, Universidade Federal do Rio de Janeiro Rio de Janeiro RJ Brazil
| |
Collapse
|
17
|
Ji X, Xie J. Proton transfer-induced competing product channels of microsolvated Y -(H 2O) n + CH 3I (Y = F, Cl, Br, I) reactions. Phys Chem Chem Phys 2022; 24:7539-7550. [PMID: 35289813 DOI: 10.1039/d1cp04873b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential energy profiles of three proton transfer-involved product channels for the reactions of Y-(H2O)1,2 + CH3I (Y = F, Cl, Br, I) were characterized using the B97-1/ECP/d method. These three channels include the (1) PTCH3 product channel that transfers a proton from methyl to nucleophile, (2) HO--induced nucleophilic substitution (HO--SN2) product channel, and (3) oxide ion substitution (OIS) product channel that gives CH3O- and HY products. The reaction enthalpies and barrier heights follow the order OIS > PTCH3 > HO--SN2 > Y--SN2, and thus HO--SN2 can compete with the most favored Y--SN2 product channel under singly-/doubly-hydrated conditions, while the PTCH3 channel only occurs under high collision energy and the OIS channel is the least probable. All product channels share the same pre-reaction complex, Y-(H2O)n-CH3I, in the entrance of the potential energy profile, signifying the importance of the pre-reaction complex. For HO-/Y--SN2 channels, we considered front-side attack, back-side attack, and halogen-bonded complex mechanisms. Incremental hydration increases the barriers of both HO-/Y--SN2 channels as well as their barrier difference, implying that the HO--SN2 channel becomes less important when further hydrated. Varying the nucleophile Y- from F- to I- also increases the barrier heights and barrier difference, which correlates with the proton affinity of the nucleophiles. Energy decomposition analyses show that both the orbital interaction energy and structural deformation energy of the transition states determine the SN2 barrier change trend with incremental hydration and varying Y-. In brief, this work computes the comprehensive potential energy surfaces of the HO--SN2 and PTCH3 channels and shows how proton transfer affects the microsolvated Y-(H2O)1,2 + CH3I reaction by competing with the traditional Y--SN2 channel.
Collapse
Affiliation(s)
- Xiaoyan Ji
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Jing Xie
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
18
|
Mallick S, Kumar P. Effect of microsolvation on the mode specificity of the OH˙(H 2O) + HCl reaction. Phys Chem Chem Phys 2021; 23:25246-25255. [PMID: 34734608 DOI: 10.1039/d1cp01300a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study investigates the mode specificity in the microsolvated OH˙(H2O) + HCl reaction using on-the-fly direct dynamics simulation. To the best of our knowledge, this is the first study which aims to gain insights into the effect of microsolvation on the mode selectivity. Our investigation reveals that, similar to the gas phase OH˙ + HCl reaction, the microsolvated reaction is also predominantly affected by the vibrational excitation of the HCl mode, whereas the OH vibrational mode behaves as a spectator. Interestingly, in contrast to the behavior of the bare reaction, the integral cross section at the ground state of the microsolvated reaction decreases with an increase in translational energy. However, for the vibrational excited states, the reactivity of the microsolvated reaction is found to be higher than that of the bare reaction within the selected range of translational energies.
Collapse
Affiliation(s)
- Subhasish Mallick
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
19
|
Abstract
Nonstatistical dynamics is important for many chemical reactions. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular kinetics assumes a reactant molecule maintains a statistical microcanonical ensemble of vibrational states during its dissociation so that its unimolecular dynamics are time independent. Such dynamics results when the reactant's atomic motion is chaotic or irregular. Intrinsic non-RRKM dynamics occurs when part of the reactant's phase space consists of quasiperiodic/regular motion and a bottleneck exists, so that the unimolecular rate constant is time dependent. Nonrandom excitation of a molecule may result in short-time apparent non-RRKM dynamics. For rotational activation, the 2J + 1 K levels for a particular J may be highly mixed, making K an active degree of freedom, or K may be a good quantum number and an adiabatic degree of freedom. Nonstatistical dynamics is often important for bimolecular reactions and their intermediates and for product-energy partitioning of bimolecular and unimolecular reactions. Post–transition state dynamics is often highly complex and nonstatistical.
Collapse
Affiliation(s)
- Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| |
Collapse
|
20
|
Bastian B, Michaelsen T, Ončák M, Meyer J, Wester R. F−(H2O)+CH3I ligand exchange reaction dynamics. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2002018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Björn Bastian
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
21
|
Bastian B, Michaelsen T, Li L, Ončák M, Meyer J, Zhang DH, Wester R. Imaging Reaction Dynamics of F -(H 2O) and Cl -(H 2O) with CH 3I. J Phys Chem A 2020; 124:1929-1939. [PMID: 32050071 PMCID: PMC7197043 DOI: 10.1021/acs.jpca.0c00098] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The
dynamics of microhydrated nucleophilic substitution reactions
have been studied using crossed beam velocity map imaging experiments
and quasiclassical trajectory simulations at different collision energies
between 0.3 and 2.6 eV. For F–(H2O) reacting
with CH3I, a small fraction of hydrated product ions I–(H2O) is observed at low collision energies.
This product, as well as the dominant I–, is formed
predominantly through indirect reaction mechanisms. In contrast, a
much smaller indirect fraction is determined for the unsolvated reaction.
At the largest studied collision energies, the solvated reaction is
found to also occur via a direct rebound mechanism. The measured product
angular distributions exhibit an overall good agreement with the simulated
angular distributions. Besides nucleophilic substitution, also ligand
exchange reactions forming F–(CH3I) and,
at high collision energies, proton transfer reactions are detected.
The differential scattering images reveal that the Cl–(H2O) + CH3I reaction also proceeds predominantly
via indirect reaction mechanisms.
Collapse
Affiliation(s)
- Björn Bastian
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Lulu Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Olasz B, Czakó G. High-Level-Optimized Stationary Points for the F -(H 2O) + CH 3I System: Proposing a New Water-Induced Double-Inversion Pathway. J Phys Chem A 2019; 123:454-462. [PMID: 30571112 DOI: 10.1021/acs.jpca.8b10630] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report 29 stationary points for the F-(H2O) + CH3I reaction obtained by using the high-level explicitly correlated CCSD(T)-F12b method with the aug-cc-pVDZ basis set for the determination of the benchmark structures and frequencies and the aug-cc-pVQZ basis for energy computations. The stationary points characterize the monohydrated F-- and OH--induced Walden-inversion pathways and, for the first time, the front-side attack and F--induced double-inversion mechanisms leading to CH3F with retention as well as the novel H2O-induced double-inversion retention pathway producing CH3OH. Hydration effectively increases the relative energies of the stationary points, but the monohydrated inversion pathways are still barrierless, whereas the front-side attack and double-inversion barrier heights are around 30 and 20 kcal/mol, respectively.
Collapse
Affiliation(s)
- Balázs Olasz
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry , University of Szeged , Rerrich Béla tér 1 , Szeged H-6720 , Hungary
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry , University of Szeged , Rerrich Béla tér 1 , Szeged H-6720 , Hungary
| |
Collapse
|
23
|
Liu X, Yang L, Zhang J, Sun J. Competition of F/OH-Induced S N2 and Proton-Transfer Reactions with Increased Solvation. J Phys Chem A 2018; 122:9446-9453. [PMID: 30444620 DOI: 10.1021/acs.jpca.8b08572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The potential energy profiles of F/OH-induced nucleophilic substitution (SN2) and proton-transfer (PT) channels evolving with solvation for reactions of F-(H2O) n=1-2 + CH3I were characterized using B3LYP/ECP/d method. The hydrogen-bonded F-(H2O) n---HCH2I prereaction complex at the entrance of potential energy surface (PES) has a significant role on the reaction dynamics for each channel. Among the above three channels, the F-SN2 channel is the most preferred and OH-SN2 could be competitive. In contrast, the PT channel will occur at much higher collision energy. Importantly, for each channel, the central barrier is gradually increased with the addition of water molecules. This phenomenon indicates that the reactivity will decrease with degrees of solvation and this has been confirmed by experiment and direct dynamics simulations. Moreover, compared with the previous trajectory simulations, a non-IRC behavior has been uncovered. The water delivering process from fluorine to iodine side as illustrated on PES is barely observed, and instead, the reaction tends to dehydrate before passing through the SN2 barrier and proceeds with the less hydrated pathway in order to weaken the steric effect. The work presented here shows the comprehensive potential energy surfaces and structures information on the F-SN2, PT, and OH-SN2 channels, and predict their competitive relationship, which would be helpful for better understanding the dynamics behavior of the title and analogous reactions.
Collapse
Affiliation(s)
- Xu Liu
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Li Yang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Jiaxu Zhang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Jianmin Sun
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| |
Collapse
|
24
|
Liu X, Zhang J, Yang L, Hase WL. How a Solvent Molecule Affects Competing Elimination and Substitution Dynamics. Insight into Mechanism Evolution with Increased Solvation. J Am Chem Soc 2018; 140:10995-11005. [DOI: 10.1021/jacs.8b04529] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xu Liu
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiaxu Zhang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Li Yang
- State Key Laboratory of Advanced Welding and Joining, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - William L. Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
25
|
Hamlin TA, Swart M, Bickelhaupt FM. Nucleophilic Substitution (S N 2): Dependence on Nucleophile, Leaving Group, Central Atom, Substituents, and Solvent. Chemphyschem 2018; 19:1315-1330. [PMID: 29542853 PMCID: PMC6001448 DOI: 10.1002/cphc.201701363] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/12/2022]
Abstract
The reaction potential energy surface (PES), and thus the mechanism of bimolecular nucleophilic substitution (SN 2), depends profoundly on the nature of the nucleophile and leaving group, but also on the central, electrophilic atom, its substituents, as well as on the medium in which the reaction takes place. Here, we provide an overview of recent studies and demonstrate how changes in any one of the aforementioned factors affect the SN 2 mechanism. One of the most striking effects is the transition from a double-well to a single-well PES when the central atom is changed from a second-period (e. g. carbon) to a higher-period element (e.g, silicon, germanium). Variations in nucleophilicity, leaving group ability, and bulky substituents around a second-row element central atom can then be exploited to change the single-well PES back into a double-well. Reversely, these variations can also be used to produce a single-well PES for second-period elements, for example, a stable pentavalent carbon species.
Collapse
Affiliation(s)
- Trevor A. Hamlin
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
| | - Marcel Swart
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institut de Química Computacional I Catàlisi and Department de QuímicaUniversitat de Girona17003GironaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry andAmsterdam Center for Multiscale Modeling (ACMM)Vrije Universiteit AmsterdamDe Boelelaan 10831081 HVAmsterdamThe Netherlands
- Institute of Molecules and Materials (IMM)Radboud UniversityHeyendaalseweg 1356525 AJNijmegenThe Netherlands
| |
Collapse
|
26
|
Abstract
The dynamics of chemical reactions in liquid solutions are now amenable to direct study using ultrafast laser spectroscopy techniques and advances in computer simulation methods. The surrounding solvent affects the chemical reaction dynamics in numerous ways, which include: (i) formation of complexes between reactants and solvent molecules; (ii) modifications to transition state energies and structures relative to the reactants and products; (iii) coupling between the motions of the reacting molecules and the solvent modes, and exchange of energy; (iv) solvent caging of reactants and products; and (v) structural changes to the solvation shells in response to the changing chemical identity of the solutes, on timescales which may be slower than the reactive events. This article reviews progress in the study of bimolecular chemical reaction dynamics in solution, concentrating on reactions which occur on ground electronic states. It illustrates this progress with reference to recent experimental and computational studies, and considers how the various ways in which a solvent affects the chemical reaction dynamics can be unravelled. Implications are considered for research in fields such as mechanistic synthetic chemistry.
Collapse
Affiliation(s)
- Andrew J Orr-Ewing
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
27
|
Yu F. Dynamic exit-channel pathways of the microsolvated HOO -(H 2O) + CH 3Cl S N2 reaction: Reaction mechanisms at the atomic level from direct chemical dynamics simulations. J Chem Phys 2018; 148:014302. [PMID: 29306291 DOI: 10.1063/1.5000400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Microsolvated bimolecular nucleophilic substitution (SN2) reaction of monohydrated hydrogen peroxide anion [HOO-(H2O)] with methyl chloride (CH3Cl) has been investigated with direct chemical dynamics simulations at the M06-2X/6-31+G(d,p) level of theory. Dynamic exit-channel pathways and corresponding reaction mechanisms at the atomic level are revealed in detail. Accordingly, a product distribution of 0.85:0.15 is obtained for Cl-:Cl-(H2O), which is consistent with a previous experiment [D. L. Thomsen et al. J. Am. Chem. Soc. 135, 15508 (2013)]. Compared with the HOO- + CH3Cl SN2 reaction, indirect dynamic reaction mechanisms are enhanced by microsolvation for the HOO-(H2O) + CH3Cl SN2 reaction. On the basis of our simulations, further crossed molecular beam imaging experiments are highly suggested for the SN2 reactions of HOO- + CH3Cl and HOO-(H2O) + CH3Cl.
Collapse
Affiliation(s)
- Feng Yu
- Department of Physics, School of Science, Xi'an Technological University, No. 4 Jinhua North Road, Xi'an, Shaanxi 710032, China
| |
Collapse
|
28
|
Carrascosa E, Meyer J, Wester R. Imaging the dynamics of ion–molecule reactions. Chem Soc Rev 2017; 46:7498-7516. [DOI: 10.1039/c7cs00623c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of ion–molecule reactions have been studied in the last years using the crossed-beam ion imaging technique, from charge transfer and proton transfer to nucleophilic substitution and elimination.
Collapse
Affiliation(s)
- Eduardo Carrascosa
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Jennifer Meyer
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|