1
|
Chatterjee S, Ray D. Acceleration with Interpretability: A Surrogate Model-Based Collective Variable for Enhanced Sampling. J Chem Theory Comput 2025; 21:1561-1571. [PMID: 39905595 DOI: 10.1021/acs.jctc.4c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Most enhanced sampling methods facilitate the exploration of molecular free energy landscapes by applying a bias potential along a reduced dimensional collective variable (CV) space. The success of these methods depends on the ability of the CVs to follow the relevant slow modes of the system. Intuitive CVs, such as distances or contacts, often prove inadequate, particularly in biological systems involving many coupled degrees of freedom. Machine learning algorithms, especially neural networks (NN), can automate the process of CV discovery by combining a large number of molecular descriptors and often outperform intuitive CVs in sampling efficiency. However, their lack of interpretability and high cost of evaluation during trajectory propagation make NN-CVs difficult to apply to large biomolecular processes. Here, we introduce a surrogate model approach using lasso regression to express the output of a neural network as a linear combination of an automatically chosen subset of the input descriptors. We demonstrate successful applications of our surrogate model CVs in the enhanced sampling simulation of the conformational landscape of alanine dipeptide and chignolin mini-protein. In addition to providing mechanistic insights due to their explainable nature, the surrogate model CVs showed a negligible loss in efficiency and accuracy, compared to the NN-CVs, in reconstructing the underlying free energy surface. Moreover, due to their simplified functional forms, these CVs are better at extrapolating to unseen regions of the conformational space, e.g., saddle points. Surrogate model CVs are also less expensive to evaluate compared to their NN counterparts, making them suitable for enhanced sampling simulation of large and complex biomolecular processes.
Collapse
Affiliation(s)
- Sompriya Chatterjee
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| | - Dhiman Ray
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
2
|
Fu H, Zhou M, Chipot C, Cai W. Overcoming Sampling Issues and Improving Computational Efficiency in Collective-Variable-Based Enhanced-Sampling Simulations: A Tutorial. J Phys Chem B 2024; 128:9706-9713. [PMID: 39321324 DOI: 10.1021/acs.jpcb.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
This tutorial is designed to help users overcome sampling challenges and improve computational efficiency in collective-variable (CV)-based enhanced-sampling, or importance-sampling, simulations. Toward this end, we introduce well-tempered metadynamics-extended adaptive biasing force (WTM-eABF) and its integration with Gaussian accelerated molecular dynamics (GaMD). Additionally, use will be made of a method for identifying the least-free-energy pathway (LFEP) and multiple concurrent pathways on high-dimensional free-energy surfaces. We illustrate these sampling techniques with the conformational equilibria of trialanine and chignolin in aqueous solution as test cases. This tutorial assumes that the user has prior experience with molecular dynamics (MD) simulations, in general, with the popular program NAMD, and to some extent with Colvars, the module for CV-based calculations. This tutorial can, however, in large measure be used in conjunction with alternate MD engines that support the Colvars module such as GROMACS, LAMMPS, and Tinker-HP.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Mengchen Zhou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign, UMR n°7019, Université de Lorraine, BP 70239, Vandœuvre-lès-Nancy F-54506, France
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago 60637, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Fu H, Bian H, Shao X, Cai W. Collective Variable-Based Enhanced Sampling: From Human Learning to Machine Learning. J Phys Chem Lett 2024; 15:1774-1783. [PMID: 38329095 DOI: 10.1021/acs.jpclett.3c03542] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Enhanced-sampling algorithms relying on collective variables (CVs) are extensively employed to study complex (bio)chemical processes that are not amenable to brute-force molecular simulations. The selection of appropriate CVs characterizing the slow movement modes is of paramount importance for reliable and efficient enhanced-sampling simulations. In this Perspective, we first review the application and limitations of CVs obtained from chemical and geometrical intuition. We also introduce path-sampling algorithms, which can identify path-like CVs in a high-dimensional free-energy space. Machine-learning algorithms offer a viable approach to finding suitable CVs by analyzing trajectories from preliminary simulations. We discuss both the performance of machine-learning-derived CVs in enhanced-sampling simulations of experimental models and the challenges involved in applying these CVs to realistic, complex molecular assemblies. Moreover, we provide a prospective view of the potential advancements of machine-learning algorithms for the development of CVs in the field of enhanced-sampling simulations.
Collapse
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hengwei Bian
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
4
|
Ray D, Parrinello M. Kinetics from Metadynamics: Principles, Applications, and Outlook. J Chem Theory Comput 2023; 19:5649-5670. [PMID: 37585703 DOI: 10.1021/acs.jctc.3c00660] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Metadynamics is a popular enhanced sampling algorithm for computing the free energy landscape of rare events by using molecular dynamics simulation. Ten years ago, Tiwary and Parrinello introduced the infrequent metadynamics approach for calculating the kinetics of transitions across free energy barriers. Since then, metadynamics-based methods for obtaining rate constants have attracted significant attention in computational molecular science. Such methods have been applied to study a wide range of problems, including protein-ligand binding, protein folding, conformational transitions, chemical reactions, catalysis, and nucleation. Here, we review the principles of elucidating kinetics from metadynamics-like approaches, subsequent methodological developments in this area, and successful applications on chemical, biological, and material systems. We also highlight the challenges of reconstructing accurate kinetics from enhanced sampling simulations and the scope of future developments.
Collapse
Affiliation(s)
- Dhiman Ray
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| |
Collapse
|
5
|
Rydzewski J, Chen M, Ghosh TK, Valsson O. Reweighted Manifold Learning of Collective Variables from Enhanced Sampling Simulations. J Chem Theory Comput 2022; 18:7179-7192. [PMID: 36367826 DOI: 10.1021/acs.jctc.2c00873] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Enhanced sampling methods are indispensable in computational chemistry and physics, where atomistic simulations cannot exhaustively sample the high-dimensional configuration space of dynamical systems due to the sampling problem. A class of such enhanced sampling methods works by identifying a few slow degrees of freedom, termed collective variables (CVs), and enhancing the sampling along these CVs. Selecting CVs to analyze and drive the sampling is not trivial and often relies on chemical intuition. Despite routinely circumventing this issue using manifold learning to estimate CVs directly from standard simulations, such methods cannot provide mappings to a low-dimensional manifold from enhanced sampling simulations, as the geometry and density of the learned manifold are biased. Here, we address this crucial issue and provide a general reweighting framework based on anisotropic diffusion maps for manifold learning that takes into account that the learning data set is sampled from a biased probability distribution. We consider manifold learning methods based on constructing a Markov chain describing transition probabilities between high-dimensional samples. We show that our framework reverts the biasing effect, yielding CVs that correctly describe the equilibrium density. This advancement enables the construction of low-dimensional CVs using manifold learning directly from the data generated by enhanced sampling simulations. We call our framework reweighted manifold learning. We show that it can be used in many manifold learning techniques on data from both standard and enhanced sampling simulations.
Collapse
Affiliation(s)
- Jakub Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tushar K Ghosh
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Omar Valsson
- Department of Chemistry, University of North Texas, Denton, Texas 76201, United States
| |
Collapse
|
6
|
Ray D, Ansari N, Rizzi V, Invernizzi M, Parrinello M. Rare Event Kinetics from Adaptive Bias Enhanced Sampling. J Chem Theory Comput 2022; 18:6500-6509. [PMID: 36194840 DOI: 10.1021/acs.jctc.2c00806] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We introduce a novel enhanced sampling approach named on-the-fly probability enhanced sampling (OPES) flooding for calculating the kinetics of rare events from atomistic molecular dynamics simulation. This method is derived from the OPES approach [Invernizzi and Parrinello, J. Phys. Chem. Lett. 2020, 11, 7, 2731-2736], which has been recently developed for calculating converged free energy surfaces for complex systems. In this paper, we describe the theoretical details of the OPES flooding technique and demonstrate the application on three systems of increasing complexity: barrier crossing in a two-dimensional double-well potential, conformational transition in the alanine dipeptide in the gas phase, and the folding and unfolding of the chignolin polypeptide in an aqueous environment. From extensive tests, we show that the calculation of accurate kinetics not only requires the transition state to be bias-free, but the amount of bias deposited should also not exceed the effective barrier height measured along the chosen collective variables. In this vein, the possibility of computing rates from biasing suboptimal order parameters has also been explored. Furthermore, we describe the choice of optimum parameter combinations for obtaining accurate results from limited computational effort.
Collapse
Affiliation(s)
- Dhiman Ray
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Narjes Ansari
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| | - Valerio Rizzi
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy.,School of Pharmaceutical Sciences and Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel Servet 1, 1211 Genève 4, Switzerland
| | | | - Michele Parrinello
- Atomistic Simulations, Italian Institute of Technology, Via Enrico Melen 83, 16152 Genova, Italy
| |
Collapse
|
7
|
Avery C, Patterson J, Grear T, Frater T, Jacobs DJ. Protein Function Analysis through Machine Learning. Biomolecules 2022; 12:1246. [PMID: 36139085 PMCID: PMC9496392 DOI: 10.3390/biom12091246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Machine learning (ML) has been an important arsenal in computational biology used to elucidate protein function for decades. With the recent burgeoning of novel ML methods and applications, new ML approaches have been incorporated into many areas of computational biology dealing with protein function. We examine how ML has been integrated into a wide range of computational models to improve prediction accuracy and gain a better understanding of protein function. The applications discussed are protein structure prediction, protein engineering using sequence modifications to achieve stability and druggability characteristics, molecular docking in terms of protein-ligand binding, including allosteric effects, protein-protein interactions and protein-centric drug discovery. To quantify the mechanisms underlying protein function, a holistic approach that takes structure, flexibility, stability, and dynamics into account is required, as these aspects become inseparable through their interdependence. Another key component of protein function is conformational dynamics, which often manifest as protein kinetics. Computational methods that use ML to generate representative conformational ensembles and quantify differences in conformational ensembles important for function are included in this review. Future opportunities are highlighted for each of these topics.
Collapse
Affiliation(s)
- Chris Avery
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - John Patterson
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Tyler Grear
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Theodore Frater
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Donald J. Jacobs
- Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
8
|
Computational methods for exploring protein conformations. Biochem Soc Trans 2021; 48:1707-1724. [PMID: 32756904 PMCID: PMC7458412 DOI: 10.1042/bst20200193] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022]
Abstract
Proteins are dynamic molecules that can transition between a potentially wide range of structures comprising their conformational ensemble. The nature of these conformations and their relative probabilities are described by a high-dimensional free energy landscape. While computer simulation techniques such as molecular dynamics simulations allow characterisation of the metastable conformational states and the transitions between them, and thus free energy landscapes, to be characterised, the barriers between states can be high, precluding efficient sampling without substantial computational resources. Over the past decades, a dizzying array of methods have emerged for enhancing conformational sampling, and for projecting the free energy landscape onto a reduced set of dimensions that allow conformational states to be distinguished, known as collective variables (CVs), along which sampling may be directed. Here, a brief description of what biomolecular simulation entails is followed by a more detailed exposition of the nature of CVs and methods for determining these, and, lastly, an overview of the myriad different approaches for enhancing conformational sampling, most of which rely upon CVs, including new advances in both CV determination and conformational sampling due to machine learning.
Collapse
|
9
|
Zhang J, Lei YK, Yang YI, Gao YQ. Deep learning for variational multiscale molecular modeling. J Chem Phys 2020; 153:174115. [DOI: 10.1063/5.0026836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jun Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518055 Shenzhen, China
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Yao-Kun Lei
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Yi Isaac Yang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518055 Shenzhen, China
| | - Yi Qin Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, 518055 Shenzhen, China
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, 100871 Beijing, China
- Biomedical Pioneering Innovation Center, Peking University, 100871 Beijing, China
| |
Collapse
|
10
|
Peter EK, Shea JE, Schug A. CORE-MD, a path correlated molecular dynamics simulation method. J Chem Phys 2020; 153:084114. [DOI: 10.1063/5.0015398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Emanuel K. Peter
- John von Neumann Institute for Computing and Julich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Alexander Schug
- John von Neumann Institute for Computing and Julich Supercomputing Centre, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
- Faculty of Biology, University of Duisburg-Essen, Duisburg, Germany
| |
Collapse
|
11
|
Verkhivker GM, Agajanian S, Hu G, Tao P. Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning. Front Mol Biosci 2020; 7:136. [PMID: 32733918 PMCID: PMC7363947 DOI: 10.3389/fmolb.2020.00136] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Allosteric regulation is a common mechanism employed by complex biomolecular systems for regulation of activity and adaptability in the cellular environment, serving as an effective molecular tool for cellular communication. As an intrinsic but elusive property, allostery is a ubiquitous phenomenon where binding or disturbing of a distal site in a protein can functionally control its activity and is considered as the "second secret of life." The fundamental biological importance and complexity of these processes require a multi-faceted platform of synergistically integrated approaches for prediction and characterization of allosteric functional states, atomistic reconstruction of allosteric regulatory mechanisms and discovery of allosteric modulators. The unifying theme and overarching goal of allosteric regulation studies in recent years have been integration between emerging experiment and computational approaches and technologies to advance quantitative characterization of allosteric mechanisms in proteins. Despite significant advances, the quantitative characterization and reliable prediction of functional allosteric states, interactions, and mechanisms continue to present highly challenging problems in the field. In this review, we discuss simulation-based multiscale approaches, experiment-informed Markovian models, and network modeling of allostery and information-theoretical approaches that can describe the thermodynamics and hierarchy allosteric states and the molecular basis of allosteric mechanisms. The wealth of structural and functional information along with diversity and complexity of allosteric mechanisms in therapeutically important protein families have provided a well-suited platform for development of data-driven research strategies. Data-centric integration of chemistry, biology and computer science using artificial intelligence technologies has gained a significant momentum and at the forefront of many cross-disciplinary efforts. We discuss new developments in the machine learning field and the emergence of deep learning and deep reinforcement learning applications in modeling of molecular mechanisms and allosteric proteins. The experiment-guided integrated approaches empowered by recent advances in multiscale modeling, network science, and machine learning can lead to more reliable prediction of allosteric regulatory mechanisms and discovery of allosteric modulators for therapeutically important protein targets.
Collapse
Affiliation(s)
- Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Steve Agajanian
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, United States
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Peng Tao
- Department of Chemistry, Center for Drug Discovery, Design, and Delivery (CD4), Center for Scientific Computation, Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
12
|
Liao Q. Enhanced sampling and free energy calculations for protein simulations. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:177-213. [PMID: 32145945 DOI: 10.1016/bs.pmbts.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular dynamics simulation is a powerful computational technique to study biomolecular systems, which complements experiments by providing insights into the structural dynamics relevant to biological functions at atomic scale. It can also be used to calculate the free energy landscapes of the conformational transitions to better understand the functions of the biomolecules. However, the sampling of biomolecular configurations is limited by the free energy barriers that need to be overcome, leading to considerable gaps between the timescales reached by MD simulation and those governing biological processes. To address this issue, many enhanced sampling methodologies have been developed to increase the sampling efficiency of molecular dynamics simulations and free energy calculations. Usually, enhanced sampling algorithms can be classified into methods based on collective variables (CV-based) and approaches which do not require predefined CVs (CV-free). In this chapter, the theoretical basis of free energy estimation is briefly reviewed first, followed by the reviews of the most common CV-based and CV-free methods including the presentation of some examples and recent developments. Finally, the combination of different enhanced sampling methods is discussed.
Collapse
Affiliation(s)
- Qinghua Liao
- Science for Life Laboratory, Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
13
|
Provasi D. Ligand-Binding Calculations with Metadynamics. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2019; 2022:233-253. [PMID: 31396906 DOI: 10.1007/978-1-4939-9608-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
All-atom molecular dynamics simulations can capture the dynamic degrees of freedom that characterize molecular recognition, the knowledge of which constitutes the cornerstone of rational approaches to drug design and optimization. In particular, enhanced sampling algorithms, such as metadynamics, are powerful tools to dramatically reduce the computational cost required for a mechanistic description of the binding process. Here, we describe the essential details characterizing these simulation strategies, focusing on the critical step of identifying suitable reaction coordinates, as well as on the different analysis algorithms to estimate binding affinity and residence times. We conclude with a survey of published applications that provides explicit examples of successful simulations for several targets.
Collapse
Affiliation(s)
- Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Abstract
We introduce a method to obtain one-dimensional collective variables for studying rarely occurring transitions between two metastable states separated by a high free energy barrier. No previous information, not even approximated, on the path followed during the transition is needed. The only requirement is to know the fluctuations of the system while in the two metastable states. With this information in hand, we build the collective variable using a modified version of Fisher's linear discriminant analysis. The usefulness of this approach is tested on the metadynamics simulation of two representative systems. The first is the freezing of silver iodide into the superionic α-phase, and the second is the study of a classical Diels-Alder reaction. The collective variable works very well in these two diverse cases.
Collapse
Affiliation(s)
- Dan Mendels
- Department of Chemistry and Applied Biosciences , ETH Zurich, c/o USI Campus , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali , Universitá della Svizzera italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
| | - GiovanniMaria Piccini
- Department of Chemistry and Applied Biosciences , ETH Zurich, c/o USI Campus , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali , Universitá della Svizzera italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
| | - Michele Parrinello
- Department of Chemistry and Applied Biosciences , ETH Zurich, c/o USI Campus , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
- Facoltá di Informatica, Istituto di Scienze Computazionali , Universitá della Svizzera italiana (USI) , Via Giuseppe Buffi 13 , CH-6900 Lugano , Ticino , Switzerland
| |
Collapse
|
15
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|