1
|
Peña Ccoa WJ, Mukadum F, Ramon A, Stirnemann G, Hocky GM. A direct computational assessment of vinculin-actin unbinding kinetics reveals catch-bonding behavior. Proc Natl Acad Sci U S A 2025; 122:e2425982122. [PMID: 40397673 DOI: 10.1073/pnas.2425982122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/23/2025] Open
Abstract
Vinculin forms a catch bond with the cytoskeletal polymer actin, displaying an increased bond lifetime upon force application. Notably, this behavior depends on the direction of the applied force, which has significant implications for cellular mechanotransduction. In this work, we present a comprehensive molecular dynamics simulation study, employing enhanced sampling techniques to investigate the thermodynamic, kinetic, and mechanistic aspects of this phenomenon at physiologically relevant forces. We dissect a catch bond mechanism in which force shifts vinculin between either a weakly or strongly bound state. Our results demonstrate that models for these states have unbinding times consistent with those from single-molecule studies, and suggest that both have some intrinsic catch-bonding behavior. We provide atomistic insight into this behavior, and show how a directional pulling force can promote the strong or weak state. Crucially, our strategy can be extended to measure the difficult-to-capture effects of small mechanical forces on biomolecular systems in general, and those involved in mechanotransduction more specifically.
Collapse
Affiliation(s)
| | - Fatemah Mukadum
- Department of Chemistry, New York University, New York, NY 10003
| | - Aubin Ramon
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Chimie Physique et Chimie pour le Vivant Laboratory, Department of Chemistry, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne University, CNRS, Paris 75005, France
| | - Guillaume Stirnemann
- Chimie Physique et Chimie pour le Vivant Laboratory, Department of Chemistry, École Normale Supérieure, Paris Sciences et Lettres (PSL) University, Sorbonne University, CNRS, Paris 75005, France
| | - Glen M Hocky
- Department of Chemistry, New York University, New York, NY 10003
- Simons Center For Computational Physical Chemistry, New York University, New York, NY 10003
| |
Collapse
|
2
|
Forget S, Juillé M, Duboué-Dijon E, Stirnemann G. Simulation-Guided Conformational Space Exploration to Assess Reactive Conformations of a Ribozyme. J Chem Theory Comput 2024; 20:6263-6277. [PMID: 38958594 DOI: 10.1021/acs.jctc.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Self-splicing ribozymes are small ribonucleic acid (RNA) enzymes that catalyze their own cleavage through a transphosphoesterification reaction. While this process is involved in some specific steps of viral RNA replication and splicing, it is also of importance in the context of the (putative) first autocatalytic RNA-based systems that could have preceded the emergence of modern life. The uncatalyzed phosphoester bond formation is thermodynamically very unfavorable, and many experimental studies have focused on understanding the molecular features of catalysis in these ribozymes. However, chemical reaction paths are short-lived and not easily characterized by experimental approaches, so molecular simulation approaches appear as an ideal tool to unveil the molecular details of the reaction. Here, we focus on the model hairpin ribozyme. We show that identifying a relevant initial conformation for reactivity studies, which is frequently overlooked in mixed quantum-classical studies that predominantly concentrate on the chemical reaction itself, can be highly challenging. These challenges stem from limitations in both available experimental structures (which are chemically altered to prevent self-cleavage) and the accuracy of force fields, together with the necessity for comprehensive sampling. We show that molecular dynamics simulations, combined with extensive conformational phase space exploration with Hamiltonian replica-exchange simulations, enable us to characterize the relevant conformational basins of the minimal hairpin ribozyme in the ligated state prior to self-cleavage. We find that what is usually considered a canonical reactive conformation with active site geometries and hydrogen-bond patterns that are optimal for the addition-elimination reaction with general acid/general base catalysis is metastable and only marginally populated. The thermodynamically stable conformation appears to be consistent with the expectations of a mechanism that does not require the direct participation of ribozyme residues in the reaction. While these observations may suffer from forcefield inaccuracies, all investigated forcefields lead to the same conclusions upon proper sampling, contrasting with previous investigations on shorter timescales suggesting that at least one reparametrization of the Amber99 forcefield allowed to stabilize aligned active site conformations. Our study demonstrates that identifying the most pertinent reactant state conformation holds equal importance alongside the accurate determination of the thermodynamics and kinetics of the chemical steps of the reaction.
Collapse
Affiliation(s)
- Sélène Forget
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Marie Juillé
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elise Duboué-Dijon
- Université Paris Cité, CNRS, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|
3
|
Cea PA, Pérez M, Herrera SM, Muñoz SM, Fuentes-Ugarte N, Coche-Miranda J, Maturana P, Guixé V, Castro-Fernandez V. Deciphering Structural Traits for Thermal and Kinetic Stability across Protein Family Evolution through Ancestral Sequence Reconstruction. Mol Biol Evol 2024; 41:msae127. [PMID: 38913681 PMCID: PMC11229819 DOI: 10.1093/molbev/msae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Natural proteins are frequently marginally stable, and an increase in environmental temperature can easily lead to unfolding. As a result, protein engineering to improve protein stability is an area of intensive research. Nonetheless, since there is usually a high degree of structural homology between proteins from thermophilic organisms and their mesophilic counterparts, the identification of structural determinants for thermoadaptation is challenging. Moreover, in many cases, it has become clear that the success of stabilization strategies is often dependent on the evolutionary history of a protein family. In the last few years, the use of ancestral sequence reconstruction (ASR) as a tool for elucidation of the evolutionary history of functional traits of a protein family has gained strength. Here, we used ASR to trace the evolutionary pathways between mesophilic and thermophilic kinases that participate in the biosynthetic pathway of vitamin B1 in bacteria. By combining biophysics approaches, X-ray crystallography, and molecular dynamics simulations, we found that the thermal stability of these enzymes correlates with their kinetic stability, where the highest thermal/kinetic stability is given by an increase in small hydrophobic amino acids that allow a higher number of interatomic hydrophobic contacts, making this type of interaction the main support for stability in this protein architecture. The results highlight the potential benefits of using ASR to explore the evolutionary history of protein sequence and structure to identify traits responsible for the kinetic and thermal stability of any protein architecture.
Collapse
Affiliation(s)
- Pablo A Cea
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Myriam Pérez
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Sixto M Herrera
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Sebastián M Muñoz
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Nicolás Fuentes-Ugarte
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - José Coche-Miranda
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| | - Victor Castro-Fernandez
- Departamento de Biología, Facultad de Ciencias, Laboratorio de Bioquímica y Biología Molecular, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Dabin A, Stirnemann G. Atomistic simulations of RNA duplex thermal denaturation: Sequence- and forcefield-dependence. Biophys Chem 2024; 307:107167. [PMID: 38262278 DOI: 10.1016/j.bpc.2023.107167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
Double-stranded RNA is the end-product of template-based replication, and is also the functional state of some biological RNAs. Similarly to proteins and DNA, they can be denatured by temperature, with important physiological and technological implications. Here, we use an in silico strategy to probe the thermal denaturation of RNA duplexes. Following previous results that were obtained on a few different duplexes, and which nuanced the canonical 2-state picture of nucleic acid denaturation, we here specifically address three different aspects that greatly improve our description of the temperature-induced dsRNA separation. First, we investigate the effect of the spatial distribution of weak and strong base-pairs among the duplex sequence. We show that the deviations from the two-state dehybridization mechanism are more pronounced when a strong core is flanked with weak extremities, while duplexes with a weak core but strong extremities exhibit a two-state behavior, which can be explained by the key role played by base fraying. This was later verified by generating artificial hairpin or circular states containing one or two locked duplex extremities, which results in an important reinforcement of the entire HB structure of the duplex and higher melting temperatures. Finally, we demonstrate that our results are little sensitive to the employed combination of RNA and water forcefields. The trends in thermal stability among the different sequences as well as the observed unfolding mechanisms (and the deviations from a two-state scenario) remain the same regardless of the employed atomistic models. However, our study points to possible limitations of recent reparametrizations of the Amber RNA forcefield, which sometimes results in duplexes that readily denature under ambient conditions, in contradiction with available experimental results.
Collapse
Affiliation(s)
- Aimeric Dabin
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université de Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
5
|
Dabin A, Stirnemann G. Toward a Molecular Mechanism of Complementary RNA Duplexes Denaturation. J Phys Chem B 2023. [PMID: 37389985 DOI: 10.1021/acs.jpcb.3c00908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
RNA duplexes are relatively rare but play very important biological roles. As an end-product of template-based RNA replication, they also have key implications for hypothetical primitive forms of life. Unless they are specifically separated by enzymes, these duplexes denature upon a temperature increase. However, mechanistic and kinetic aspects of RNA (and DNA) duplex thermal denaturation remain unclear at the microscopic level. We propose an in silico strategy that probes the thermal denaturation of RNA duplexes and allows for an extensive conformational space exploration along a wide temperature range with atomistic precision. We show that this approach first accounts for the strong sequence and length dependence of the duplexes melting temperature, reproducing the trends seen in the experiments and predicted by nearest-neighbor models. The simulations are then instrumental at providing a molecular picture of the temperature-induced strand separation. The textbook canonical "all-or-nothing" two-state model, very much inspired by the protein folding mechanism, can be nuanced. We demonstrate that a temperature increase leads to significantly distorted but stable structures with extensive base-fraying at the extremities, and that the fully formed duplexes typically do not form around melting. The duplex separation therefore appears as much more gradual than commonly thought.
Collapse
Affiliation(s)
- Aimeric Dabin
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
6
|
Fusco G, Biancaniello C, Vrettas MD, De Simone A. Thermal tuning of protein hydration in a hyperthermophilic enzyme. Front Mol Biosci 2022; 9:1037445. [PMID: 36518847 PMCID: PMC9742426 DOI: 10.3389/fmolb.2022.1037445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/14/2022] [Indexed: 10/24/2023] Open
Abstract
Water at the protein surface is an active biological molecule that plays a critical role in many functional processes. Using NMR-restrained MD simulations, we here addressed how protein hydration is tuned at high biological temperatures by analysing homologous acylphosphatase enzymes (AcP) possessing similar structure and dynamics under very different thermal conditions. We found that the hyperthermophilic Sso AcP at 80°C interacts with a lower number of structured waters in the first hydration shell than its human homologous mt AcP at 37°C. Overall, the structural and dynamical properties of waters at the surface of the two enzymes resulted similar in the first hydration shell, including solvent molecules residing in the active site. By contrast the dynamical content of water molecules in the second hydration shell was found to diverge, with higher mobility observed in Sso AcP at 80°C. Taken together the results delineate the subtle differences in the hydration properties of mt AcP and Sso AcP, and indicate that the concept of corresponding states with equivalent dynamics in homologous mesophilic and hyperthermophylic proteins should be extended to the first hydration shell.
Collapse
Affiliation(s)
- Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | - Michail D. Vrettas
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Alfonso De Simone
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| |
Collapse
|
7
|
Fusco G, Bemporad F, Chiti F, Dobson CM, De Simone A. The role of structural dynamics in the thermal adaptation of hyperthermophilic enzymes. Front Mol Biosci 2022; 9:981312. [PMID: 36158582 PMCID: PMC9490001 DOI: 10.3389/fmolb.2022.981312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins from hyperthermophilic organisms are evolutionary optimised to adopt functional structures and dynamics under conditions in which their mesophilic homologues are generally inactive or unfolded. Understanding the nature of such adaptation is of crucial interest to clarify the underlying mechanisms of biological activity in proteins. Here we measured NMR residual dipolar couplings of a hyperthermophilic acylphosphatase enzyme at 80°C and used these data to generate an accurate structural ensemble representative of its native state. The resulting energy landscape was compared to that obtained for a human homologue at 37°C, and additional NMR experiments were carried out to probe fast (15N relaxation) and slow (H/D exchange) backbone dynamics, collectively sampling fluctuations of the two proteins ranging from the nanosecond to the millisecond timescale. The results identified key differences in the strategies for protein-protein and protein-ligand interactions of the two enzymes at the respective physiological temperatures. These include the dynamical behaviour of a β-strand involved in the protection against aberrant protein aggregation and concerted motions of loops involved in substrate binding and catalysis. Taken together these results elucidate the structure-dynamics-function relationship associated with the strategies of thermal adaptation of protein molecules.
Collapse
Affiliation(s)
- Giuliana Fusco
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Francesco Bemporad
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Florence, Italy
| | | | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Alfonso De Simone,
| |
Collapse
|
8
|
Stirnemann G. Molecular interpretation of single-molecule force spectroscopy experiments with computational approaches. Chem Commun (Camb) 2022; 58:7110-7119. [PMID: 35678696 DOI: 10.1039/d2cc01350a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single molecule force-spectroscopy techniques have granted access to unprecedented molecular-scale details about biochemical and biological mechanisms. However, the interpretation of the experimental data is often challenging. Computational and simulation approaches (all-atom steered MD simulations in particular) are key to provide molecular details about the associated mechanisms, to help test different hypotheses and to predict experimental results. In this review, particular recent efforts directed towards the molecular interpretation of single-molecule force spectroscopy experiments on proteins and protein-related systems (often in close collaboration with experimental groups) will be presented. These results will be discussed in the broader context of the field, highlighting the recent achievements and the ongoing challenges for computational biophysicists and biochemists. In particular, I will focus on the input gained from molecular simulations approaches to rationalize the origin of the unfolded protein elasticity and the protein conformational behavior under force, to understand how force denaturation differs from chemical, thermal or shear unfolding, and to unravel the molecular details of unfolding events for a variety of systems. I will also discuss the use of models based on Langevin dynamics on a 1-D free-energy surface to understand the effect of protein segmentation on the work exerted by a force, or, at the other end of the spectrum of computational techniques, how quantum calculations can help to understand the reactivity of disulfide bridges exposed to force.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
9
|
Stirnemann G. Recent Advances and Emerging Challenges in the Molecular Modeling of Mechanobiological Processes. J Phys Chem B 2022; 126:1365-1374. [PMID: 35143190 DOI: 10.1021/acs.jpcb.1c10715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many biological processes result from the effect of mechanical forces on macromolecular structures and on their interactions. In particular, the cell shape, motion, and differentiation directly depend on mechanical stimuli from the extracellular matrix or from neighboring cells. The development of experimental techniques that can measure and characterize the tiny forces acting at the cellular scale and down to the single-molecule, biomolecular level has enabled access to unprecedented details about the involved mechanisms. However, because the experimental observables often do not provide a direct atomistic picture of the corresponding phenomena, particle-based simulations performed at various scales are instrumental in complementing these experiments and in providing a molecular interpretation. Here, we will review the recent key achievements in the field, and we will highlight and discuss the many technical challenges these simulations are facing, as well as suggest future directions for improvement.
Collapse
Affiliation(s)
- Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, PSL University, Université de Paris, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
10
|
Computer-aided comprehensive explorations of RNA structural polymorphism through complementary simulation methods. QRB DISCOVERY 2022. [PMID: 37529277 PMCID: PMC10392686 DOI: 10.1017/qrd.2022.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
While RNA folding was originally seen as a simple problem to solve, it has been shown that the promiscuous interactions of the nucleobases result in structural polymorphism, with several competing structures generally observed for non-coding RNA. This inherent complexity limits our understanding of these molecules from experiments alone, and computational methods are commonly used to study RNA. Here, we discuss three advanced sampling schemes, namely Hamiltonian-replica exchange molecular dynamics (MD), ratchet-and-pawl MD and discrete path sampling, as well as the HiRE-RNA coarse-graining scheme, and highlight how these approaches are complementary with reference to recent case studies. While all computational methods have their shortcomings, the plurality of simulation methods leads to a better understanding of experimental findings and can inform and guide experimental work on RNA polymorphism.
Collapse
|
11
|
Timr S, Sterpone F. Computational Insights into the Unfolding of a Destabilized Superoxide Dismutase 1 Mutant. BIOLOGY 2021; 10:1240. [PMID: 34943155 PMCID: PMC8698278 DOI: 10.3390/biology10121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
In this work, we investigate the β-barrel of superoxide dismutase 1 (SOD1) in a mutated form, the isoleucine 35 to alanine (I35A) mutant, commonly used as a model system to decipher the role of the full-length apoSOD1 protein in amyotrophic lateral sclerosis (ALS). It is known from experiments that the mutation reduces the stability of the SOD1 barrel and makes it largely unfolded in the cell at 37 degrees Celsius. We deploy state-of-the-art computational machinery to examine the thermal destabilization of the I35A mutant by comparing two widely used force fields, Amber a99SB-disp and CHARMM36m. We find that only the latter force field, when combined with the Replica Exchange with Solute Scaling (REST2) approach, reproduces semi-quantitatively the experimentally observed shift in the melting between the original and the mutated SOD1 barrel. In addition, we analyze the unfolding process and the conformational landscape of the mutant, finding these largely similar to those of the wildtype. Nevertheless, we detect an increased presence of partially misfolded states at ambient temperatures. These states, featuring conformational changes in the region of the β-strands β4-β6, might provide a pathway for nonnative aggregation.
Collapse
Affiliation(s)
- Stepan Timr
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- J. Heyrovsky Institute of Physical Chemistry, Czech Academy of Sciences, Dolejskova 2155/3, 18223 Prague 8, Czech Republic
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique (UPR 9080), CNRS, Université de Paris, 13 Rue Pierre et Marie Curie, 75005 Paris, France
- Institut de Biologie Physico-Chimique, Fondation Edmond de Rothschild, PSL Research University, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Two energy barriers and a transient intermediate state determine the unfolding and folding dynamics of cold shock protein. Commun Chem 2021; 4:156. [PMID: 36697724 PMCID: PMC9814876 DOI: 10.1038/s42004-021-00592-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 01/28/2023] Open
Abstract
Cold shock protein (Csp) is a typical two-state folding model protein which has been widely studied by biochemistry and single molecule techniques. Recently two-state property of Csp was confirmed by atomic force microscopy (AFM) through direct pulling measurement, while several long-lifetime intermediate states were found by force-clamp AFM. We systematically studied force-dependent folding and unfolding dynamics of Csp using magnetic tweezers with intrinsic constant force capability. Here we report that Csp mostly folds and unfolds with a single step over force range from 5 pN to 50 pN, and the unfolding rates show different force sensitivities at forces below and above ~8 pN, which determines a free energy landscape with two barriers and a transient intermediate state between them along one transition pathway. Our results provide a new insight on protein folding mechanism of two-state proteins.
Collapse
|
13
|
Temperature-resistant and solvent-tolerant lipases as industrial biocatalysts: Biotechnological approaches and applications. Int J Biol Macromol 2021; 187:127-142. [PMID: 34298046 DOI: 10.1016/j.ijbiomac.2021.07.101] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022]
Abstract
The development of new biocatalytic systems to replace the chemical catalysts, with suitable characteristics in terms of efficiency, stability under high temperature reactions and in the presence of organic solvents, reusability, and eco-friendliness is considered a very important step to move towards the green processes. From this basis, the use of lipase as a catalyst is highly desired for many industrial applications because it offers the reactions in which could be used, stability in harsh conditions, reusability and a greener process. Therefore, the introduction of temperature-resistant and solvent-tolerant lipases have become essential and ideal for industrial applications. Temperature-resistant and solvent-tolerant lipases have been involved in many large-scale applications including biodiesel, detergent, food, pharmaceutical, organic synthesis, biosensing, pulp and paper, textile, animal feed, cosmetics, and leather industry. So, the present review provides a comprehensive overview of the industrial use of lipase. Moreover, special interest in biotechnological and biochemical techniques for enhancing temperature-resistance and solvent-tolerance of lipases to be suitable for the industrial uses.
Collapse
|
14
|
Katava M, Stirnemann G, Pachetti M, Capaccioli S, Paciaroni A, Sterpone F. Specific Interactions and Environment Flexibility Tune Protein Stability under Extreme Crowding. J Phys Chem B 2021; 125:6103-6111. [PMID: 34100611 DOI: 10.1021/acs.jpcb.1c01511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Macromolecular crowding influences protein mobility and stability in vivo. A precise description of the crowding effect on protein thermal stability requires the estimate of the combined effects of excluded volume, specific protein-environment interactions, as well as the thermal response of the crowders. Here, we explore an ideal model system, the lysozyme protein in powder state, to dissect the factors controlling the melting of the protein under extreme crowding. By deploying state-of-the art molecular simulations, supported by calorimetric experiments, we assess the role of the environment flexibility and of intermolecular electrostatic interactions. In particular, we show that the temperature-dependent flexibility of the macromolecular crowders, along with specific interactions, significantly alleviates the stabilizing contributions of the static volume effect.
Collapse
Affiliation(s)
- Marina Katava
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Guillaume Stirnemann
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Maria Pachetti
- Elettra-Sincrotrone Trieste, S.S. 14 km 163.5, Area Science Park, 34149 Trieste, Italy.,Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Simone Capaccioli
- Dipartimento di Fisica, Universitá di Pisa, largo Pontecorvo 3, 56127 Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, I-56127 Pisa, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Universitá di Perugia, via A. Pascoli, 06123 Perugia, Italy
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique, IBPC, CNRS UPR9080, Université Paris Diderot, Sorbonne Paris Cité, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
15
|
Maffucci I, Laage D, Sterpone F, Stirnemann G. Thermal Adaptation of Enzymes: Impacts of Conformational Shifts on Catalytic Activation Energy and Optimum Temperature. Chemistry 2020; 26:10045-10056. [DOI: 10.1002/chem.202001973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Irene Maffucci
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
- Present address: Centre de recherche Royallieu Université de Technologie de Compiègne, UPJV CNRS, Enzyme and Cell Engineering CS 60319-60203 Compiègne Cedex France
| | - Damien Laage
- PASTEUR, Département de chimie École Normale Supérieure, PSL University Sorbonne Université, CNRS 24 rue Lhomond 75005 Paris France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique Institut de Biologie Physico-Chimique PSL University, Université de Paris 13 rue Pierre et Marie Curie 75005 Paris France
| |
Collapse
|
16
|
Timr S, Gnutt D, Ebbinghaus S, Sterpone F. The Unfolding Journey of Superoxide Dismutase 1 Barrels under Crowding: Atomistic Simulations Shed Light on Intermediate States and Their Interactions with Crowders. J Phys Chem Lett 2020; 11:4206-4212. [PMID: 32364389 DOI: 10.1021/acs.jpclett.0c00699] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The thermal stability of the superoxide dismutase 1 protein in a crowded solution is investigated by performing enhanced sampling molecular simulations. By complementing thermal unfolding experiments done close to physiological conditions (200 mg/mL), we provide evidence that the presence of the protein crowder bovine serum albumin in different packing states has only a minor, and essentially destabilizing, effect. The finding that quinary interactions counteract the pure stabilization contribution stemming from excluded volume is rationalized here by exploring the SOD1 unfolding mechanism in microscopic detail. In agreement with recent experiments, we unveil the importance of intermediate unfolded states as well as the correlation between protein conformations and local packing with the crowders. This link helps us to elucidate why certain SOD1 mutations involved in the ALS disease reverse the stability effect of the intracellular environment.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, F-75005 Paris, France
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, Technical University Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, Technical University Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, F-75005 Paris, France
| |
Collapse
|
17
|
Timr S, Madern D, Sterpone F. Protein thermal stability. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:239-272. [PMID: 32145947 DOI: 10.1016/bs.pmbts.2019.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Proteins, in general, fold to a well-organized three-dimensional structure in order to function. The stability of this functional shape can be perturbed by external environmental conditions, such as temperature. Understanding the molecular factors underlying the resistance of proteins to the thermal stress has important consequences. First of all, it can aid the design of thermostable enzymes able to perform efficient catalysis in the high-temperature regime. Second, it is an essential brick of knowledge required to decipher the evolutionary pathways of life adaptation on Earth. Thanks to the development of atomistic simulations and ad hoc enhanced sampling techniques, it is now possible to investigate this problem in silico, and therefore provide support to experiments. After having described the methodological aspects, the chapter proposes an extended discussion on two problems. First, we focus on thermophilic proteins, a perfect model to address the issue of thermal stability and molecular evolution. Second, we discuss the issue of how protein thermal stability is affected by crowded in vivo-like conditions.
Collapse
Affiliation(s)
- Stepan Timr
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | | | - Fabio Sterpone
- CNRS, Université de Paris, UPR 9080, Laboratoire de Biochimie Théorique, Paris, France; Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France.
| |
Collapse
|
18
|
Maffucci I, Laage D, Stirnemann G, Sterpone F. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes. Phys Chem Chem Phys 2020; 22:18361-18373. [DOI: 10.1039/d0cp02738c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The thermal resistance of two homolog enzymes is investigated, with an emphasis on their local stability and flexibility, and on the possible implications regarding their reactivity.
Collapse
Affiliation(s)
- Irene Maffucci
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Damien Laage
- PASTEUR
- Département de chimie
- École Normale Supérieure
- PSL University
- Sorbonne Université
| | - Guillaume Stirnemann
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique
- Institut de Biologie Physico-Chimique
- PSL University
- Paris
- France
| |
Collapse
|
19
|
Tapia-Rojo R, Mazo JJ, Falo F. Thermal versus mechanical unfolding in a model protein. J Chem Phys 2019; 151:185105. [PMID: 31731855 DOI: 10.1063/1.5126071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Force spectroscopy techniques are often used to learn about the free energy landscape of single biomolecules, typically by recovering free energy quantities that, extrapolated to zero force, are compared to those measured in bulk experiments. However, it is not always clear how the information obtained from a mechanically perturbed system can be related to the information obtained using other denaturants since tensioned molecules unfold and refold along a reaction coordinate imposed by the force, which is not likely to be meaningful in its absence. Here, we explore this dichotomy by investigating the unfolding landscape of a model protein, which is unfolded first mechanically through typical force spectroscopy-like protocols and next thermally. When unfolded by nonequilibrium force extension and constant force protocols, we recover a simple two-barrier landscape as the protein reaches the extended conformation through a metastable intermediate. Interestingly, folding-unfolding equilibrium simulations at low forces suggested a totally different scenario, where this metastable state plays little role in the unfolding mechanism, and the protein unfolds through two competing pathways [R. Tapia-Rojo et al., J. Chem. Phys. 141, 135102 (2014)]. Finally, we use Markov state models to describe the configurational space of the unperturbed protein close to the critical temperature. The thermal dynamics is well understood by a one-dimensional landscape along an appropriate reaction coordinate, however it is very different from the mechanical picture. In this sense, the results of our protein model for the mechanical and thermal descriptions provide incompatible views of the folding/unfolding landscape of the system, and the estimated quantities to zero force result are hard to interpret.
Collapse
Affiliation(s)
- Rafael Tapia-Rojo
- Departamento de Física de la Materia Condensada, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Juan J Mazo
- Departamento de Física de la Materia Condensada, Instituto de Ciencia de Materiales de Aragón, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Fernando Falo
- Departamento de Física de la Materia Condensada, Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
20
|
Gnutt D, Timr S, Ahlers J, König B, Manderfeld E, Heyden M, Sterpone F, Ebbinghaus S. Stability Effect of Quinary Interactions Reversed by Single Point Mutations. J Am Chem Soc 2019; 141:4660-4669. [DOI: 10.1021/jacs.8b13025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, Braunschweig 38106, Germany
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Stepan Timr
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Jonas Ahlers
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Benedikt König
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Emily Manderfeld
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, 551 East University Drive, Tempe, Arizona 85287, United States
| | - Fabio Sterpone
- CNRS Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, Université Paris Denis Diderot, Sorbonne Paris Cité, PSL Research University, 13 rue Pierre et Marie Curie, Paris 75005, France
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, Braunschweig 38106, Germany
- Department of Physical Chemistry II, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| |
Collapse
|
21
|
Languin-Cattoën O, Melchionna S, Derreumaux P, Stirnemann G, Sterpone F. Three Weaknesses for Three Perturbations: Comparing Protein Unfolding Under Shear, Force, and Thermal Stresses. J Phys Chem B 2018; 122:11922-11930. [PMID: 30444631 DOI: 10.1021/acs.jpcb.8b08711] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The perturbation of a protein conformation by a physiological fluid flow is crucial in various biological processes including blood clotting and bacterial adhesion to human tissues. Investigating such mechanisms by computer simulations is thus of great interest, but it requires development of ad hoc strategies to mimic the complex hydrodynamic interactions acting on the protein from the surrounding flow. In this study, we apply the Lattice Boltzmann Molecular Dynamics (LBMD) technique built on the implicit solvent coarse-grained model for protein Optimized Potential for Efficient peptide structure Prediction (OPEP) and a mesoscopic representation of the fluid solvent, to simulate the unfolding of a small globular cold-shock protein in shear flow and to compare it to the unfolding mechanisms caused either by mechanical or thermal perturbations. We show that each perturbation probes a specific weakness of the protein and causes the disruption of the native fold along different unfolding pathways. Notably, the shear flow and the thermal unfolding exhibit very similar pathways, while because of the directionality of the perturbation, the unfolding under force is quite different. For force and thermal disruption of the native state, the coarse-grained simulations are compared to all-atom simulations in explicit solvent, showing an excellent agreement in the explored unfolding mechanisms. These findings encourage the use of LBMD based on the OPEP model to investigate how a flow can affect the function of larger proteins, for example, in catch-bond systems.
Collapse
Affiliation(s)
- Olivier Languin-Cattoën
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | | | - Philippe Derreumaux
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Guillaume Stirnemann
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Fabio Sterpone
- Laboratoire de Biochimie Théorique , CNRS, Institut de Biologie Physico-Chimique, Sorbonne Paris Cité, PSL University , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|