1
|
Sokolov M, Cui Q. Impact of Fluctuations in the Peridinin-Chlorophyll a-Protein on the Energy Transfer: Insights from Classical and QM/MM Molecular Dynamics Simulations. Biochemistry 2025; 64:879-894. [PMID: 39903904 DOI: 10.1021/acs.biochem.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The peridinin-chlorophyll a-protein is a light-harvesting complex found in dinoflagellates, which has an unusually high fraction of carotenoids. The carotenoids are directly involved in the energy transfer to chlorophyll with high efficiency. The detailed mechanism of energy transfer and the roles of the protein in the process remain debated in the literature, in part because most calculations have focused on a limited number of chromophore structures. Here we investigate the magnitude of the fluctuations of the site energies of individual and coupled chromophores, as the results are essential to the understanding of experimental spectra and the energy transfer mechanism. To this end, we sampled conformations of the PCP complex by means of classical and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations. Subsequently we performed (supermolecular) excitation energy calculations on a statistically significant number of snapshots using TD-LC-DFT/CAM-B3LYP and the semiempirical time-dependent long-range corrected density functional tight binding (TD-LC-DFTB2) as the QM method. We observed that the magnitude of the site energy fluctuations is large compared to the differences of the site energies between the chromophores, and this also holds for the coupled chromophores. We also investigated the composition of the coupled states, the effect of coupling on the absorption spectra, as well as transition dipole moment orientations and the possibility of delocalized states with Chl a. Our study thus complements previous computational studies relying on a single structure and establishes the most prominent features of the coupled chromophores that are essential to the robustness of the energy transfer process.
Collapse
Affiliation(s)
- Monja Sokolov
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Qiang Cui
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Beck WF. Intramolecular charge transfer and the function of vibronic excitons in photosynthetic light harvesting. PHOTOSYNTHESIS RESEARCH 2024; 162:139-156. [PMID: 38656684 DOI: 10.1007/s11120-024-01095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/15/2024] [Indexed: 04/26/2024]
Abstract
A widely discussed explanation for the prevalence of pairs or clusters of closely spaced electronic chromophores in photosynthetic light-harvesting proteins is the presence of ultrafast and highly directional excitation energy transfer pathways mediated by vibronic excitons, the delocalized optical excitations derived from mixing of the electronic and vibrational states of the chromophores. We discuss herein the hypothesis that internal conversion processes between exciton states on the <100 fs timescale are possible when the excitonic potential energy surfaces are controlled by the vibrational modes that induce charge transfer character in a strongly coupled system of chromophores. We discuss two examples, the peridinin-chlorophyll protein from marine dinoflagellates and the intact phycobilisome from cyanobacteria, in which the intramolecular charge-transfer (ICT) character arising from out-of-plane distortion of the conjugation of carotenoid or bilin chromophores also results in localization of the initially delocalized optical excitation on the vibrational timescale. Tuning of the ground state conformations of the chromophores to manipulate their ICT character provides a natural photoregulatory mechanism, which would control the overall quantum yield of excitation energy transfer by turning on and off the delocalized character of the optical excitations.
Collapse
Affiliation(s)
- Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Wijesiri K, Gascón JA. Structural Models of the First Molecular Events in the Heliorhodopsin Photocycle. J Phys Chem B 2024; 128:5966-5972. [PMID: 38877606 DOI: 10.1021/acs.jpcb.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Retinylidene conformations and rearrangements of the hydrogen-bond network in the vicinity of the protonated Schiff base (PSB) play a key role in the proton transfer process in the Heliorhodopsin photocycle. Photoisomerization of the retinylidene chromophore and the formation of photoproducts corresponding to the early intermediates were modeled using a combination of molecular dynamics simulations and quantum mechanical/molecular mechanics calculations. The resulting structures were refined, and the respective excitation energies were calculated. Aided by metadynamics simulations, we constructed a photoisomerized intermediate where the 13-cis retinylidene chromophore is rotated about a parallel pair of double bonds at C13=C14 and C15=NZ double bonds. We demonstrate how the deprotonation of the Schiff base and the concomitant protonation of the Glu107 counterion are only favored because of these rearrangements.
Collapse
Affiliation(s)
- Kithmini Wijesiri
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
4
|
Hernández-Prieto MA, Hiller R, Chen M. Chlorophyll f can replace chlorophyll a in the soluble antenna of dinoflagellates. PHOTOSYNTHESIS RESEARCH 2022; 152:13-22. [PMID: 34988868 DOI: 10.1007/s11120-021-00890-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
Chlorophyll f is a new type of chlorophyll isolated from cyanobacteria. The absorption and fluorescence characteristics of chlorophyll f permit these oxygenic-photosynthetic organisms to thrive in environments where white light is scarce but far-red light is abundant. To explore the ligand properties of chlorophyll f and its energy transfer profiles we established two different in vitro reconstitution systems. The reconstituted peridinin-chlorophyll f protein complex (chlorophyll f-PCP) showed a stoichiometry ratio of 4:1 between peridinin and chlorophyll f, consistent with the peridinin:chlorophyll a ratio from native PCP complexes. Using emission wavelength at 712 nm, the excitation fluorescence featured a broad peak at 453 nm and a shoulder at 511 nm confirming energy transfer from peridinin to chlorophyll f. In addition, by using a synthetic peptide mimicking the first transmembrane helix of light-harvesting chlorophyll proteins of plants, we report that chlorophyll f, similarly to chlorophyll b, did not interact with the peptide contrarily to chlorophyll a, confirming the accessory role of chlorophyll f in photosystems. The binding of chlorophyll f, even in the presence of chlorophylls a and b, by PCP complexes shows the flexibility of chlorophyll-protein complexes and provides an opportunity for the introduction of new chlorophyll species to extend the photosynthetic spectral range.
Collapse
Affiliation(s)
| | - Roger Hiller
- Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
5
|
Spectral Features of Canthaxanthin in HCP2. A QM/MM Approach. Molecules 2021; 26:molecules26092441. [PMID: 33922133 PMCID: PMC8122715 DOI: 10.3390/molecules26092441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 11/17/2022] Open
Abstract
The increased interest in sequencing cyanobacterial genomes has allowed the identification of new homologs to both the N-terminal domain (NTD) and C-terminal domain (CTD) of the Orange Carotenoid Protein (OCP). The N-terminal domain homologs are known as Helical Carotenoid Proteins (HCPs). Although some of these paralogs have been reported to act as singlet oxygen quenchers, their distinct functional roles remain unclear. One of these paralogs (HCP2) exclusively binds canthaxanthin (CAN) and its crystal structure has been recently characterized. Its absorption spectrum is significantly red-shifted, in comparison to the protein in solution, due to a dimerization where the two carotenoids are closely placed, favoring an electronic coupling interaction. Both the crystal and solution spectra are red-shifted by more than 50 nm when compared to canthaxanthin in solution. Using molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) studies of HCP2, we aim to simulate these shifts as well as obtain insight into the environmental and coupling effects of carotenoid-protein interactions.
Collapse
|
6
|
Pigni NB, Clark KL, Beck WF, Gascón JA. Spectral Signatures of Canthaxanthin Translocation in the Orange Carotenoid Protein. J Phys Chem B 2020; 124:11387-11395. [PMID: 33287537 DOI: 10.1021/acs.jpcb.0c08756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The orange carotenoid protein (OCP) is involved in the photoprotective processes in cyanobacteria via nonphotochemical quenching. Triggered by blue-green light absorption, the carotenoid chromophore undergoes translocation, displacing around 12 Å from the C-terminal domain (CTD) to the N-terminal domain (NTD). The detailed molecular rearrangements that occur within the carotenoid and the protein during this process remain largely elusive. By using a combination of molecular dynamics, well-tempered metadynamics, and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, we were able to mimic the translocation of the carotenoid from the inactive OCPO and obtain metastable red-shifted states in the photoactivation mechanism, replicating the λmax values of reference experimental spectra. In addition, our simulations give insight into the structure of the red-shifted form of the inactive state of OCP.
Collapse
Affiliation(s)
- Natalia B Pigni
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States.,Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC-CONICET), Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Kevin L Clark
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824-1322, United States
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| |
Collapse
|
7
|
Toa ZSD, deGolian MH, Jumper CC, Hiller RG, Scholes GD. Consistent Model of Ultrafast Energy Transfer in Peridinin Chlorophyll-a Protein Using Two-Dimensional Electronic Spectroscopy and Förster Theory. J Phys Chem B 2019; 123:6410-6420. [DOI: 10.1021/acs.jpcb.9b04324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zi S. D. Toa
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Mary H. deGolian
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Chanelle C. Jumper
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| | - Roger G. Hiller
- Department of Biology, Faculty of Science and Engineering, Macquarie University, Sydney NSW 2109, Australia
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Washington Road, Princeton, New Jersey 08540, United States
| |
Collapse
|
8
|
Guberman-Pfeffer MJ, Gascón JA. Carotenoid-Chlorophyll Interactions in a Photosynthetic Antenna Protein: A Supramolecular QM/MM Approach. Molecules 2018; 23:molecules23102589. [PMID: 30308965 PMCID: PMC6222738 DOI: 10.3390/molecules23102589] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
Multichromophoric interactions control the initial events of energy capture and transfer in the light harvesting peridinin-chlorophyll a protein (PCP) from marine algae dinoflagellates. Due to the van der Waals association of the carotenoid peridinin (Per) with chlorophyll a in a unique 4:1 stoichiometric ratio, supramolecular quantum mechanical/molecular mechanical (QM/MM) calculations are essential to accurately describe structure, spectroscopy, and electronic coupling. We show that, by enabling inter-chromophore electronic coupling, substantial effects arise in the nature of the transition dipole moment and the absorption spectrum. We further hypothesize that inter-protein domain Per-Per interactions are not negligible, and are needed to explain the experimental reconstruction features of the spectrum in wild-type PCP.
Collapse
Affiliation(s)
| | - José A Gascón
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
9
|
Roscioli JD, Ghosh S, LaFountain AM, Frank HA, Beck WF. Structural Tuning of Quantum Decoherence and Coherent Energy Transfer in Photosynthetic Light Harvesting. J Phys Chem Lett 2018; 9:5071-5077. [PMID: 30118229 DOI: 10.1021/acs.jpclett.8b01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photosynthetic organisms capture energy from solar photons by constructing light-harvesting proteins containing arrays of electronic chromophores. Collective excitations (excitons) arise when energy transfer between chromophores is coherent, or wavelike, in character. Here we demonstrate experimentally that coherent energy transfer to the lowest-energy excitons is principally controlled in a light-harvesting protein by the temporal persistence of quantum coherence rather than by the strength of vibronic coupling. In the peridinin-chlorophyll protein from marine dinoflagellates, broad-band two-dimensional electronic spectroscopy reveals that replacing the native chlorophyll a acceptor chromophores with chlorophyll b slows energy transfer from the carotenoid peridinin to chlorophyll despite narrowing the donor-acceptor energy gap. The formyl substituent on the chlorophyll b macrocycle hastens decoherence by sensing the surrounding electrostatic noise. These findings demonstrate how quantum coherence enhances the efficiency of energy transfer despite being very short lived in light-harvesting proteins at physiological temperatures.
Collapse
Affiliation(s)
- Jerome D Roscioli
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Soumen Ghosh
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Amy M LaFountain
- Department of Chemistry , University of Connecticut , Hartford , Connecticut 06103 , United States
| | - Harry A Frank
- Department of Chemistry , University of Connecticut , Hartford , Connecticut 06103 , United States
| | - Warren F Beck
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|