1
|
Chen L, Li X, Xie Y, Liu N, Qin X, Chen X, Bu Y. Modulation of proton-coupled electron transfer reactions in lysine-containing alpha-helixes: alpha-helixes promoting long-range electron transfer. Phys Chem Chem Phys 2022; 24:14592-14602. [PMID: 35667661 DOI: 10.1039/d2cp00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The proton-coupled electron transfer (PCET) reaction plays an important role in promoting many biological and chemical reactions. Usually, the rate of the PCET reaction increases with an increase in the electron transfer distance because long-range electron transfer requires more free energy barriers. Our density functional theory calculations here reveal that the mechanism of PCET occurring in lysine-containing alpha(α)-helixes changes with an increasing number of residues in the α-helical structure and the different conformations because of the modulation of the excess electron distribution by the α-helical structures. The rate constants of the corresponding PCET reactions are independent of or substantially shallower dependent on the electron transfer distances along α-helixes. This counter-intuitive behavior can be attributed to the fact that the formation of larger macro-cylindrical dipole moments in longer helixes can promote electron transfer along the α-helix with a low energy barrier. These findings may be useful to gain insights into long-range electron transfer in proteins and design α-helix-based electronics via the regulation of short-range proton transfer.
Collapse
Affiliation(s)
- Long Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Li
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxin Xie
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Nian Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xin Qin
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Xiaohua Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China.
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China.
| |
Collapse
|
2
|
Martens J, van Outersterp RE, Vreeken RJ, Cuyckens F, Coene KLM, Engelke UF, Kluijtmans LAJ, Wevers RA, Buydens LMC, Redlich B, Berden G, Oomens J. Infrared ion spectroscopy: New opportunities for small-molecule identification in mass spectrometry - A tutorial perspective. Anal Chim Acta 2019; 1093:1-15. [PMID: 31735202 DOI: 10.1016/j.aca.2019.10.043] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 01/21/2023]
Abstract
Combining the individual analytical strengths of mass spectrometry and infrared spectroscopy, infrared ion spectroscopy is increasingly recognized as a powerful tool for small-molecule identification in a wide range of analytical applications. Mass spectrometry is itself a leading analytical technique for small-molecule identification on the merit of its outstanding sensitivity, selectivity and versatility. The foremost shortcoming of the technique, however, is its limited ability to directly probe molecular structure, especially when contrasted against spectroscopic techniques. In infrared ion spectroscopy, infrared vibrational spectra are recorded for mass-isolated ions and provide a signature that can be matched to reference spectra, either measured from standards or predicted using quantum-chemical calculations. Here we present an overview of the potential for this technique to develop into a versatile analytical method for identifying molecular structures in mass spectrometry-based analytical workflows. In this tutorial perspective, we introduce the reader to the technique of infrared ion spectroscopy and highlight a selection of recent experimental advances and applications in current analytical challenges, in particular in the field of untargeted metabolomics. We report on the coupling of infrared ion spectroscopy with liquid chromatography and present experiments that serve as proof-of-principle examples of strategies to address outstanding challenges.
Collapse
Affiliation(s)
- Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands.
| | - Rianne E van Outersterp
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Rob J Vreeken
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Filip Cuyckens
- Drug Metabolism & Pharmacokinetics, Janssen R&D, Beerse, Belgium
| | - Karlien L M Coene
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Udo F Engelke
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Leo A J Kluijtmans
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lutgarde M C Buydens
- Radboud University, Institute for Molecules and Materials, Chemometrics, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Britta Redlich
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525 ED, Nijmegen, the Netherlands; van't Hoff Institute for Molecular Sciences, University of Amsterdam, 1098XH, Amsterdam, Science Park 908, the Netherlands.
| |
Collapse
|
3
|
Munshi MU, Martens J, Berden G, Oomens J. Gas-Phase Infrared Ion Spectroscopy Characterization of Cu(II/I)Cyclam and Cu(II/I)2,2'-Bipyridine Redox Pairs. J Phys Chem A 2019; 123:4149-4157. [PMID: 31021091 PMCID: PMC6526468 DOI: 10.1021/acs.jpca.9b00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
We report the fingerprint
IR spectra of mass-isolated gaseous coordination
complexes of 2,2′-bipyridine (bpy) and 1,4,8,11-tetra-azacyclotetradecane
(cyclam) with a copper ion in its I and II oxidation states. Experiments
are carried out in a quadrupole ion trap (QIT) mass spectrometer coupled
to the FELIX infrared free-electron laser. Dications are prepared
using electrospray ionization (ESI), while monocations are generated
by charge reduction of the dication using electron transfer-reduction
(ETR) in the QIT. Interestingly, [Cu(bpy)2]+ can also be generated directly using ESI, so that its geometries
as produced from ETR and ESI can be compared. The effects of charge
reduction on the IR spectra are investigated by comparing the experimental
spectra with the IR spectra modeled by density functional theory.
Reduction of Cu(II) to the closed-shell Cu(I) ion retains the square-planar
geometry of the Cu–cyclam complex. In contrast, for the bis–bpy
complex with Cu, charge reduction induces a conversion from a near-square-planar
to a tetrahedral geometry. The geometry of [Cu(bpy)2]+ is identical to that of the complex generated directly from
ESI as a native structure, which indicates that the ETR product ion
thermalizes. For [Cu(cyclam)]+, however, the square-planar
geometry of the 2+ complex is retained upon charge reduction, although
a (distorted) tetrahedral geometry was predicted to be lower in energy.
These differences are attributed to different barriers to rearrangement.
Collapse
Affiliation(s)
- Musleh Uddin Munshi
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jonathan Martens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Giel Berden
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands
| | - Jos Oomens
- Radboud University , Institute for Molecules and Materials, FELIX Laboratory , Toernooiveld 7 , 6525 ED Nijmegen , The Netherlands.,University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| |
Collapse
|
4
|
Kempkes LJ, Martens J, Berden G, Houthuijs KJ, Oomens J. Investigation of the position of the radical in z3-ions resulting from electron transfer dissociation using infrared ion spectroscopy. Faraday Discuss 2019; 217:434-452. [DOI: 10.1039/c8fd00202a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular structures of six open-shell z3-ions resulting from electron transfer dissociation mass spectrometry (ETD MS) were investigated using infrared ion spectroscopy in combination with density functional theory and molecular mechanics/molecular dynamics calculations.
Collapse
Affiliation(s)
| | - Jonathan Martens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Giel Berden
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Kas J. Houthuijs
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
| | - Jos Oomens
- Radboud University
- FELIX Laboratory
- 6525 ED Nijmegen
- The Netherlands
- Van’t Hoff Institute for Molecular Sciences
| |
Collapse
|