1
|
Furuike Y, Onoue Y, Saito S, Mori T, Akiyama S. The priming phosphorylation of KaiC is activated by the release of its autokinase autoinhibition. PNAS NEXUS 2025; 4:pgaf136. [PMID: 40352643 PMCID: PMC12065004 DOI: 10.1093/pnasnexus/pgaf136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/31/2025] [Indexed: 05/14/2025]
Abstract
KaiC, a cyanobacterial circadian clock protein with autokinase activity, catalyzes the dual phosphorylation of its own S431 and T432 residues in a circadian manner in the presence of KaiA and KaiB. Priming phosphorylation at T432 is a key step that promotes secondary phosphorylation at S431. Although KaiA binding is considered essential for KaiC phosphorylation, the mechanisms underlying the activation and inactivation of priming phosphorylation remain elusive. We found that although the priming phosphorylation is autoinhibited within KaiC, it actually proceeds at a rate constant of 0.019 h-1 even in the absence of KaiA. The autoinhibition of KaiC and the mechanism underlying the release from autoinhibition by KaiA were examined by KaiC structural analysis and by classical molecular dynamics and quantum mechanics/molecular mechanics simulations. We found that the side chain of T432 adopts two rotamers in dephosphorylated KaiC, one of which places T432 in a position suitable for a nucleophilic attack on the terminal phosphate of adenosine triphosphate. However, the nucleophilicity of T432 was insufficient to overcome an energy barrier of ∼21 kcal mol-1 because the catalytic function of a nearby base, E318, was self-suppressed by hydrogen bonding to positively charged R385. Biochemical assays of KaiC mutants showed that the autoinhibition of KaiC autokinase activity is attenuated by conferring T432 high nucleophilicity through the KaiA-assisted release of R385 from E318 to E352. During the circadian cycle, R385 switches interacting partners to inactivate/activate the autokinase function and to ensure the unidirectionality of the KaiC phosphorylation cycle.
Collapse
Affiliation(s)
- Yoshihiko Furuike
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Yasuhiro Onoue
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Shinji Saito
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Toshifumi Mori
- Division of Applied Molecular Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
- Molecular Science Program, Graduate Institute for Advanced Studies, SOKENDAI, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| |
Collapse
|
2
|
Saito S. Unraveling the dynamic slowdown in supercooled water: The role of dynamic disorder in jump motions. J Chem Phys 2024; 160:194506. [PMID: 38767263 DOI: 10.1063/5.0209713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
When a liquid is rapidly cooled below its melting point without inducing crystallization, its dynamics slow down significantly without noticeable structural changes. Elucidating the origin of this slowdown has been a long-standing challenge. Here, we report a theoretical investigation into the mechanism of the dynamic slowdown in supercooled water, a ubiquitous yet extraordinary substance characterized by various anomalous properties arising from local density fluctuations. Using molecular dynamics simulations, we found that the jump dynamics, which are elementary structural change processes, deviate from Poisson statistics with decreasing temperature. This deviation is attributed to slow variables competing with the jump motions, i.e., dynamic disorder. The present analysis of the dynamic disorder showed that the primary slow variable is the displacement of the fourth nearest oxygen atom of a jumping molecule, which occurs in an environment created by the fluctuations of molecules outside the first hydration shell. As the temperature decreases, the jump dynamics become slow and intermittent. These intermittent dynamics are attributed to the prolonged trapping of jumping molecules within extended and stable low-density domains. As the temperature continues to decrease, the number of slow variables increases due to the increased cooperative motions. Consequently, the jump dynamics proceed in a higher-dimensional space consisting of multiple slow variables, becoming slower and more intermittent. It is then conceivable that with further decreasing temperature, the slowing and intermittency of the jump dynamics intensify, eventually culminating in a glass transition.
Collapse
Affiliation(s)
- Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan and The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
3
|
Yao XQ, Hamelberg D. Dissecting the Allosteric Fine-Tuning of Enzyme Catalysis. JACS AU 2024; 4:837-846. [PMID: 38425926 PMCID: PMC10900222 DOI: 10.1021/jacsau.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
Fully understanding the mechanism of allosteric regulation in biomolecules requires separating and examining all of the involved factors. In enzyme catalysis, allosteric effector binding shifts the structure and dynamics of the active site, leading to modified energetic (e.g., energy barrier) and dynamical (e.g., diffusion coefficient) factors underlying the catalyzed reaction rate. Such modifications can be subtle and dependent on the type of allosteric effector, representing a fine-tuning of protein function. The microscopic description of allosteric regulation at the level of function-dictating factors has prospective applications in fundamental and pharmaceutical sciences, which is, however, largely missing so far. Here, we characterize the allosteric fine-tuning of enzyme catalysis, using human Pin1 as an example, by performing more than half-millisecond all-atom molecular dynamics simulations. Changes of reaction kinetics and the dictating factors, including the free energy surface along the reaction coordinate and the diffusion coefficient of the reaction dynamics, under various enzyme and allosteric effector binding conditions are examined. Our results suggest equal importance of the energetic and dynamical factors, both of which can be modulated allosterically, and the combined effect determines the final allosteric output. We also reveal the potential dynamic basis for allosteric modulation using an advanced statistical technique to detect function-related conformational dynamics. Methods developed in this work can be applied to other allosteric systems.
Collapse
Affiliation(s)
- Xin-Qiu Yao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Chemistry, University of Nebraska Omaha, Omaha, Nebraska 68182-0266, United
States
| | - Donald Hamelberg
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| |
Collapse
|
4
|
Ono J, Matsumura Y, Mori T, Saito S. Conformational Dynamics in Proteins: Entangled Slow Fluctuations and Nonequilibrium Reaction Events. J Phys Chem B 2024; 128:20-32. [PMID: 38133567 DOI: 10.1021/acs.jpcb.3c05307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Proteins exhibit conformational fluctuations and changes over various time scales, ranging from rapid picosecond-scale local atomic motions to slower microsecond-scale global conformational transformations. In the presence of these intricate fluctuations, chemical reactions occur and functions emerge. These conformational fluctuations of proteins are not merely stochastic random motions but possess distinct spatiotemporal characteristics. Moreover, chemical reactions do not always proceed along a single reaction coordinate in a quasi-equilibrium manner. Therefore, it is essential to understand spatiotemporal conformational fluctuations of proteins and the conformational change processes associated with reactions. In this Perspective, we shed light on the complex dynamics of proteins and their role in enzyme catalysis by presenting recent results regarding dynamic couplings and disorder in the conformational dynamics of proteins and rare but rapid enzymatic reaction events obtained from molecular dynamics simulations.
Collapse
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshihiro Matsumura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Saito
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
5
|
Mori T, Saito S. Molecular Insights into the Intrinsic Dynamics and Their Roles During Catalysis in Pin1 Peptidyl-prolyl Isomerase. J Phys Chem B 2022; 126:5185-5193. [PMID: 35795989 DOI: 10.1021/acs.jpcb.2c02095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins are intrinsically dynamic and change conformations over a wide range of time scales. While the conformational dynamics have been realized to be important for protein functions, e.g., in activity-stability trade-offs, how they play a role during enzyme catalysis has been of debate over decades. By studying Pin1 peptidyl-prolyl isomerase using extensive molecular dynamics simulations, here we discuss how the slow intrinsic dynamics of Pin1 observed in the NMR relaxation dispersion experiment occur and couple to isomerization reactions in molecular detail. In particular, we analyze the angular correlation functions of the backbone N-H bonds and find that slow conformational transitions occur at about the 310 helix in the apo state. These events at the helical region further affect the residues at about the ligand binding site. Unfolding of this helix leads to a tight hydrogen bond between the helical region and the ligand binding loop, thus forming a stable coiled structure. The helical and coiled structures are found to be characteristic of the Pin1-ligand complex with the ligand in the trans and cis states, respectively. These results indicate that the changes in the slow dynamics of Pin1 by the isomerization reaction occur via the shift in populations of the helical and coiled states, where the balance is dependent on the ligand isomerization states.
Collapse
Affiliation(s)
- Toshifumi Mori
- Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan.,Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.,School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Moritsugu K, Yamamoto N, Yonezawa Y, Tate SI, Fujisaki H. Path Ensembles for Pin1-Catalyzed Cis-Trans Isomerization of a Substrate Calculated by Weighted Ensemble Simulations. J Chem Theory Comput 2021; 17:2522-2529. [PMID: 33769826 DOI: 10.1021/acs.jctc.0c01280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pin1 enzyme protein recognizes specifically phosphorylated serine/threonine (pSer/pThr) and catalyzes the slow interconversion of the peptidyl-prolyl bond between cis and trans forms. Structural dynamics between the cis and trans forms are essential to reveal the underlying molecular mechanism of the catalysis. In this study, we apply the weighted ensemble (WE) simulation method to obtain comprehensive path ensembles for the Pin1-catalyzed isomerization process. Associated rate constants for both cis-to-trans and trans-to-cis isomerization are calculated to be submicroseconds time scales, which are in good agreement with the calculated free energy landscape where the cis form is slightly less favorable. The committor-like analysis indicates the shift of the transition state toward trans form (at the isomerization angle ω ∼ 110°) compared to the intrinsic position for the isolated substrate (ω ∼ 90°). The calculated structural ensemble clarifies a role of both the dual-histidine motif, His59/His157, and the basic residues, Lys63/Arg68/Arg69, to anchor both sides of the peptidyl-prolyl bond, the aromatic ring in Pro, and the phosphate in pSer, respectively. The rotation of the torsion angle is found to be facilitated by relaying the hydrogen-bond partner of the main-chain oxygen in pSer from Cys113 in the cis form to Arg68 in the trans form, through Ser154 at the transition state, which is really the cause of the shift in the transition state. The role of Ser154 as a driving force of the isomerization is confirmed by additional WE and free energy calculations for S154A mutant where the isomerization takes place slightly slower and the free energy barrier increases through the mutation. The present study shows the usefulness of the WE simulation for substantial path samplings between the reactant and product states, unraveling the molecular mechanism of the enzyme catalysis.
Collapse
Affiliation(s)
- Kei Moritsugu
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehirocho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Norifumi Yamamoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Yasushige Yonezawa
- High Pressure Protein Research Center, Institute of Advanced Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama 649-6493, Japan
| | - Shin-Ichi Tate
- Department of Mathematical and Life Sciences, School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Hiroshi Fujisaki
- Department of Physics, Nippon Medical School, 1-7-1 Kyonan-cho, Musashino, Tokyo 180-0023, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
7
|
Mori T, Saito S. Dissecting the Dynamics during Enzyme Catalysis: A Case Study of Pin1 Peptidyl-Prolyl Isomerase. J Chem Theory Comput 2020; 16:3396-3407. [PMID: 32268066 DOI: 10.1021/acs.jctc.9b01279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Free energy surfaces have played a central role in studying protein conformational changes and enzymatic reactions over decades. Yet, free energy barriers and kinetics are highly dependent on the coordinates chosen to define the surface, and furthermore, the dynamics during the reactions are often overlooked. Our recent study on the Pin1-catalyzed isomerization reaction has indicated that the isomerization transition events remarkably deviate from the free energy path, highlighting the need to understand the reaction dynamics in more detail. To this end, here we investigate the reaction coordinates that describe the transition states of the free energy and transition pathways by minimizing the cross-entropy function. We show that the isomerization transition events can be expressed by the concerted changes in the improper torsion angle ζ and nearby backbone torsional angles of the ligand, whereas the transition state of the free energy surface involves changes in a broad range of coordinates including multiple protein-ligand interactions. The current result supports the previous finding that the isomerization transitions occur quickly from the conformational excited states, which is in sharp contrast to the slow and collective changes suggested from the free energy path. Our results further indicate that the coordinates derived from the transition trajectories are not sufficient for finding the transition states on the free energy surfaces due to the lack of information from conformational excited states.
Collapse
Affiliation(s)
- Toshifumi Mori
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.,School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| | - Shinji Saito
- Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.,School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
8
|
Abstract
This commentary summarizes the recent biophysical research conducted at the National Institute for Basic Biology, the National Institute for Physiological Sciences, and the Institute for Molecular Science in Okazaki, Japan.
Collapse
|