1
|
Zhao XG, Zhao YX, He SG. Reactivity of Atomic Oxygen Radical Anions in Metal Oxide Clusters. Chempluschem 2024; 89:e202400085. [PMID: 39161047 DOI: 10.1002/cplu.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
Atomic oxygen radical anion (O⋅-) represents an important type of reactive centre that exists in both chemical and biological systems. Gas-phase atomic clusters can be studied under isolated and well controlled conditions. Studies of O⋅--containing clusters in the gas-phase provide a unique strategy to interpret the chemistry of O⋅- radicals at a strictly molecular level. This review summarizes the research progresses made since 2013 for the reactivity of O⋅- radicals in the atomically precise metal oxide clusters including negatively charged, nanosized, and neutral heteronuclear metal clusters benefitting from the development of advanced experimental techniques. New electronic and geometric factors to control the reactivity and product selectivity of O⋅- radicals under dark and photo-irradiation conditions have been revealed. The detailed mechanisms of O⋅- generation have been discussed for the reaction systems of nanosized and heteroatom-doped metal oxide clusters. The catalytic reactions mediated by the O⋅- radicals in metal clusters have also been successfully established and the microscopic mechanisms about the dynamic generation and depletion of O⋅- radicals have been clearly understood. The studies of O⋅- containing metal oxide clusters in the gas-phase provided new insights into the chemistry of reactive oxygen species in related condensed-phase systems.
Collapse
Affiliation(s)
- Xi-Guan Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Yan-Xia Zhao
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Centre of Excellence in Molecular Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
2
|
Wang SD, Ma TM, Li XN, He SG. CO Oxidation Promoted by NO Adsorption on RhMn 2O 3- Cluster Anions. J Phys Chem A 2024; 128:738-746. [PMID: 38236743 DOI: 10.1021/acs.jpca.3c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CO oxidation represents an important model reaction in the gas phase to provide a clear structure-reactivity relationship in related heterogeneous catalysis. Herein, in combination with mass spectrometry experiments and quantum-chemical calculations, we identified that the RhMn2O3- cluster cannot oxidize CO into gas-phase CO2 at room temperature, while the NO preadsorbed products RhMn2O3-[(NO)1,2] are highly reactive in CO oxidation. This discovery is helpful to get a fundamental understanding on the reaction behavior in real-world three-way catalytic conditions where different kinds of reactants coexist. Theoretical calculations were performed to rationalize the crucial roles of preadsorbed NO where the strongly attached NO on the Rh atom can greatly stabilize the products RhMn2O2-[(NO)1,2] during CO oxidation and at the same time works together with the Rh atom to store electrons that stay originally in the attached CO2- unit. The leading result is that the desorption of CO2, which is the rate-determining step of CO oxidation by RhMn2O3-, can be greatly facilitated on the reactions of RhMn2O3-[(NO)1,2] with CO.
Collapse
Affiliation(s)
- Si-Dun Wang
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tong-Mei Ma
- China School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, P. R. China
| | - Xiao-Na Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, P. R. China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
3
|
Ding YQ, Chen ZY, Zhang FX, Ma JB. Coupling of N 2 and O 2 in the Gas Phase to Synthesize Nitric Oxide at Room Temperature: A Zeldovich-Like Strategy. J Phys Chem Lett 2023; 14:7597-7602. [PMID: 37603698 DOI: 10.1021/acs.jpclett.3c01675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Dinitrogen (N2) activation and its chemical transformations are some of the most challenging topics in chemistry. Herein, we report that heteronuclear metal anions AuNbBO- can mediate the direct coupling of N2 and O2 to generate NO molecules. N2 first forms the nondissociative adsorption product AuNbBON2- on AuNbBO-. In the following reactions with two O2 molecules, two NO molecules are gradually released, with the formation of AuNbBO2N- and AuNbBO3-. In the reaction with the first O2, the generated nitrene radical (N••-) originating from the dissociated N2, induces the activation of O2. Subsequently, the second O2 is anchored and forms a superoxide radical (O2•-); this radical attacks the other N atom to form an N-O bond, releasing the second NO. The N••- and O2•- radicals play key roles in the reactions. The mechanism adopted in this direct oxidation of N2 by O2 to NO can be labeled as a Zeldovich-like mechanism.
Collapse
Affiliation(s)
- Yong-Qi Ding
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhi-Ying Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Feng-Xiang Zhang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jia-Bi Ma
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
4
|
Li XN, He SG. Gas-phase reactions driven by polarized metal-metal bonding in atomic clusters. Phys Chem Chem Phys 2023; 25:4444-4459. [PMID: 36723009 DOI: 10.1039/d2cp05148f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Multimetallic catalysts exhibit great potential in the activation and catalytic transformation of small molecules. The polarized metal-metal bonds have been gradually recognized to account for the reactivity of multimetallic catalysts due to the synergistic effect of different metal centers. Gas-phase reactions on atomic clusters that compositionally resemble the active sites on related condensed-phase catalysts provide a widely accepted strategy to clarify the nature of polarized metal-metal bonds and the mechanistic details of elementary steps involved in the catalysis driven by this unique chemical bonding. This perspective review concerns the progress in the fundamental understanding of industrially and environmentally important reactions that are closely related to the polarized metal-metal bonds in clusters at a strictly molecular level. The following topics have been summarized and discussed: (1) catalytic CO oxidation with O2, H2O, and NO as oxidants (2) and the activation of other inert molecules (e.g., CH4, CO2, and N2) mediated with clusters featuring polarized metal-metal bonding. It turns out that the findings in the gas phase parallel the catalytic behaviors of condensed-phase catalysts and the knowledge can prove to be essential in inspiring future design of promising catalysts.
Collapse
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
5
|
Du S, Han H, Yan Y, Lv Y, Fan Z, Liu X, Liang X, Xie H, Zhao Z, Shi R. Structural and photoelectron spectroscopic study on the heterotrinuclear nickel-titanium dioxide carbonyl complexes Ni 2TiO 2(CO) n - ( n = 2-4). RSC Adv 2023; 13:3164-3172. [PMID: 36756438 PMCID: PMC9854245 DOI: 10.1039/d2ra07918f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Herein, the configurations and intrinsic electronic properties of heteronuclear transition metal dioxide carbonyl anions Ni2TiO2(CO) n - (n = 2-4) in the gas phase were investigated using mass spectrometry coupled anionic photoelectron spectroscopy, ab initio calculations, and simulated density-of-state (DOS) spectra. The results clearly show that the binding of electrons is enhanced by the addition of CO. The ground state structures of Ni2TiO2(CO) n - (n = 2-4) are characterized to show that three transition metal atoms (one Ti atom and two Ni atoms) forming a quasi-line is favored. The interaction between Ni and C becomes weaker as the cluster size increases. The natural electron configuration shows that the extra electron is enriched on O atoms attached to Ti, and there is strong interaction between Ti and O atoms. This work gives significant insight into the configuration and electronic structures of nickel-titanium dioxide carbonyl anions, which has potential application in adsorption of carbon monoxide on the surfaces/interfaces of alloys.
Collapse
Affiliation(s)
- Shihu Du
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Haiyan Han
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China
| | - Yongliang Yan
- School of Information and Electrical Engineering, Hebei University of EngineeringHandan 056038China
| | - Yantao Lv
- School of Information and Electrical Engineering, Hebei University of EngineeringHandan 056038China
| | - Zhihui Fan
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China
| | - Xiuhong Liu
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China
| | - Xiaoqing Liang
- Department of Physics, Taizhou UniversityTaizhou 318000China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of SciencesDalian 116023China
| | - Zhi Zhao
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China
| | - Ruili Shi
- School of Mathematics and Physics Science and Engineering, Hebei University of Engineering Handan 056038 China
| |
Collapse
|
6
|
Huang B, Tang J, Zhao X, Ma Z, Pei Y. Theoretical Study of CO Oxidation over Au1/MgO(100) with Different Vacancies. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Chen LS, Chen JJ, Ma TM, Li XN, He SG. CO self-promoted oxidation by gas-phase cluster anions IrVO4−. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Chen LS, Liu YZ, Li XN, Chen JJ, Jiang GD, Ma TM, He SG. An IrVO 4+ Cluster Catalytically Oxidizes Four CO Molecules: Importance of Ir-V Multiple Bonding. J Phys Chem Lett 2021; 12:6519-6525. [PMID: 34240876 DOI: 10.1021/acs.jpclett.1c01584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The generation and characterization of multiple metal-metal (M-M) bonds between early and late transition metals is vital to correlate the nature of multiple M-M bonds with the related reactivity in catalysis, while the examples with multiple M-M bonds have been rarely reported. Herein, we identified that the quadruple bonding interactions were formed in a gas-phase ion IrV+ with a dramatically short Ir-V bond. Oxidation of four CO molecules by IrVO4+ is a highly exothermic process driven by the generation of stable products IrV+ and CO2, and then IrV+ can be oxidized by N2O to regenerate IrVO4+. This finding overturns the general impression that vanadium oxide clusters are unwilling to oxidize multiple CO molecules because of the strong V-O bond and that at most two oxygen atoms can be supplied from a single V-containing cluster in CO oxidation. This study emphasizes the potential importance of heterobimetallic multiple M-M bonds in related heterogeneous catalysis.
Collapse
Affiliation(s)
- Le-Shi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
9
|
Pu Z, Qin J, Ao B, Dong H, Shuai M, Li F. Intermediates of Carbon Monoxide Oxidation on Praseodymium Monoxide Molecules: Insights from Matrix-Isolation IR Spectroscopy and Quantum-Chemical Calculations. Inorg Chem 2021; 60:7660-7669. [PMID: 34018728 DOI: 10.1021/acs.inorgchem.0c03607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying reaction intermediates in gas-phase investigations will provide understanding for the related catalysts in fundamental aspects including bonding interactions of the reaction species, oxidation states (OSs) of the anchored atoms, and reaction mechanisms. Herein, carbon monoxide (CO) oxidation by praseodymium monoxide (PrO) molecules has been investigated as a model reaction in solid argon using matrix-isolation IR spectroscopy and quantum-chemical calculations. Two reaction intermediates, OPr(η1-CO) and OPr(η2-CO), have been trapped and characterized in argon matrixes. The intermediate OPr(η2-CO) shows an extremely low C-O stretching band at 1624.5 cm-1. Quantum-chemistry studies indicate that the bonding in OPr(η1-CO) is described as "donor-acceptor" interactions conforming to the Dewar-Chatt-Duncanson motif. However, the bonding in OPr(η2-CO) results evidently from a combination of dominant ionic forces and normal Lewis "acid-base" interactions. The electron density of the singly occupied bonding orbital is strongly polarized to the CO fragment in OPr(η2-CO). Electronic structure analysis suggests that the two captured species exhibit Pr(III) OSs. Besides, the pathways of CO oxidation have been discussed.
Collapse
Affiliation(s)
- Zhen Pu
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Jianwei Qin
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, Sichuan, China
| | - Bingyun Ao
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621908, Sichuan, China
| | - Haopeng Dong
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Maobing Shuai
- Institute of Materials, China Academy of Engineering Physics, Mailbox No. 9-21, Huafengxincun, Jiangyou 621908, Sichuan, P. R. China
| | - Fang Li
- School of Material Science and Engineering, Southwest University of Science and Technology, 59 Middle Section of Qinglong Road, Mianyang 621010, Sichuan, P.R. China
| |
Collapse
|
10
|
Liu YZ, Chen JJ, Li XN, He SG. Activation of Carbon Dioxide by CoCD n- ( n = 0-4) Anions. J Phys Chem A 2021; 125:3710-3717. [PMID: 33899469 DOI: 10.1021/acs.jpca.1c02229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Laser ablation generated CoCDn- (n = 0-4) anions were mass selected and then reacted with CO2 in an ion trap reactor. The reactions were characterized by mass spectrometry and quantum chemical calculations. The experimental results demonstrated that the CoC- anion can convert CO2 into CO. In contrast, the bare Co- anion is inert toward CO2. Coordinated D ligands can modify the reactivity of CoCD1-4- in which CoCD1-3- can reduce CO2 into CO selectively and CoCD4- can only adsorb CO2. The crucial roles of the coordinated C and D ligands to tune the reactivity of CoCDn- (n = 0-4) toward CO2 were rationalized by theoretical calculations. Note that the hydrogenation process that is usually observed in the reactions of gas-phase metal hydrides with CO2 is completely suppressed for the reactions CoCDn- + CO2. This study provides insights into the molecular-level origin for the observations that CO can be selectively generated from CO2 catalyzed by cobalt-containing carbides in heterogeneous catalysis.
Collapse
Affiliation(s)
- Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Zhang J, Li Y, Bai Y, Li G, Yang D, Zheng H, Zou J, Kong X, Fan H, Liu Z, Jiang L, Xie H. CO oxidation on the heterodinuclear tantalum–nickel monoxide carbonyl complex anions. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Sampathkumar S, Paranthaman S. Neutral noble-metal-free VCoO 2 and CrCoO 2 cluster catalysts for CO oxidation by O 2. NEW J CHEM 2021. [DOI: 10.1039/d0nj05199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutral noble-metal-free metal oxide cluster catalysts (VCoO2 and CrCoO2) were developed for multiple CO oxidation reactions by O2.
Collapse
Affiliation(s)
- Suresh Sampathkumar
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| | - Selvarengan Paranthaman
- Department of Physics and International Research Centre
- Kalasalingam Academy of Research and Education (Deemed to be University)
- Krishnankoil 626 126
- India
| |
Collapse
|
13
|
Zhang H, Fang S, Hu YH. Recent advances in single-atom catalysts for CO oxidation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1821443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haotian Zhang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Siyuan Fang
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| | - Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, United States
| |
Collapse
|
14
|
Levin N, Lengyel J, Eckhard JF, Tschurl M, Heiz U. Catalytic Non-Oxidative Coupling of Methane on Ta 8O 2.. J Am Chem Soc 2020; 142:5862-5869. [PMID: 32125833 DOI: 10.1021/jacs.0c01306] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mass-selected Ta8O2+ cluster ions catalyze the transformation of methane in a gas-phase ion trap experiment via nonoxidative coupling into ethane and H2, which is a prospective reaction for the generation of valuable chemicals on an industrial scale. Systematic variation of the reaction conditions and the isotopic labeling of methane by deuterium allow for an unambiguous identification of a catalytic cycle. Comparison with the proposed catalytic cycle for tantalum-doped silica catalysts reveals surprising similarities as the mechanism of the C-C coupling step, but also peculiar differences like the mechanism of the eventual formation of molecular hydrogen and ethane. Therefore, this work not only supplies insights into the mechanisms of methane coupling reactions but also illustrates how the study of trapped ionic catalysts can contribute to the understanding of reactions, which are otherwise difficult to study.
Collapse
Affiliation(s)
- Nikita Levin
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jozef Lengyel
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Jan F Eckhard
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Martin Tschurl
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Ueli Heiz
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
15
|
Liu Z, Hou L, Li Y, Li G, Qin Z, Wu HS, Jia J, Xie H, Tang Z. Thermodynamics and Kinetics of Gas-Phase CO Oxidation on the Scandium Monoxide Carbonyl Complexes. J Phys Chem A 2020; 124:924-931. [PMID: 31927951 DOI: 10.1021/acs.jpca.9b10659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CO chemisorption onto the ScO+ cation was investigated using infrared photodissociation spectroscopy combined with density functional theory calculations. The spectra were recorded in the CO stretching vibrational region for the OSc(CO)n+ (n = 4-6) complex series. Comparisons of the experimental spectra with the simulated ones have established the geometries and present strong evidence that all of the CO ligands are chemisorbed, which could not be readily oxidized by scandium monoxide core into CO2. Complementary calculations demonstrate that, regardless of the thermodynamic feasibility, the CO oxidation on the scandium monoxide carbonyl complexes is kinetically unfavorable due to the significant barriers involved in the CO oxidation process. Nevertheless, the consecutive CO adsorption has a positive influence on the Sc-O bond activation.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Lina Hou
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Ya Li
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zhengbo Qin
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology , Anhui Normal University , Wuhu 241000 , China
| | - Hai-Shun Wu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Jianfeng Jia
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education , Shanxi Normal University , No. 1, Gongyuan Street , Linfen , Shanxi 041004 , China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Zichao Tang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , Fujian 361005 , China
| |
Collapse
|
16
|
Liu Z, Bai Y, Li Y, He J, Lin Q, Xie H, Tang Z. Unsaturated binuclear homoleptic nickel carbonyl anions Ni2(CO)n− (n = 4–6) featuring double three-center two-electron Ni–C–Ni bonds. Phys Chem Chem Phys 2020; 22:23773-23784. [DOI: 10.1039/d0cp03883k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two nickel atoms in the Ni2(CO)n− (n = 4–6) complexes are joined by two bridging carbonyl ligands via the sharing three-center two-electron Ni–C–Ni bond in turn to achieve the (16,16), (16,18), and eventually the favored (18,18) configurations.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Yan Bai
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Ya Li
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Jing He
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Qingyang Lin
- School of Chemical and Material Science
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials
- Ministry of Education
- Shanxi Normal University
- Linfen
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian
- China
| | - Zichao Tang
- Collaborative Innovation Center of Chemistry for Energy Materials
- State Key Laboratory for Physical Chemistry of Solid Surfaces
- and Department of Chemistry
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
17
|
Liu Z, Bai Y, Li Y, He J, Lin Q, Hou L, Wu HS, Zhang F, Jia J, Xie H, Tang Z. Multicenter electron-sharing σ-bonding in the AgFe(CO)4− complex. Dalton Trans 2020; 49:15256-15266. [DOI: 10.1039/d0dt02685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For the AgFe(CO)4− anion, the silver atom is covalently bonded to the anionic tetracarbonyl-iron, an isolobal analogue of the methyl radical, via a peculiar decentralized electron-sharing σ bond.
Collapse
|
18
|
Li XN, Wang LN, Mou LH, He SG. Catalytic CO Oxidation by Gas-Phase Metal Oxide Clusters. J Phys Chem A 2019; 123:9257-9267. [DOI: 10.1021/acs.jpca.9b05185] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Na Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Li-Hui Mou
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences and CAS Research/Education Center of Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|