1
|
Wang J, Koirala K, Do HN, Miao Y. PepBinding: A Workflow for Predicting Peptide Binding Structures by Combining Peptide Docking and Peptide Gaussian Accelerated Molecular Dynamics Simulations. J Phys Chem B 2024; 128:7332-7340. [PMID: 39041172 DOI: 10.1021/acs.jpcb.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Predicting protein-peptide interactions is crucial for understanding peptide binding processes and designing peptide drugs. However, traditional computational modeling approaches face challenges in accurately predicting peptide-protein binding structures due to the slow dynamics and high flexibility of the peptides. Here, we introduce a new workflow termed "PepBinding" for predicting peptide binding structures, which combines peptide docking, all-atom enhanced sampling simulations using the Peptide Gaussian accelerated Molecular Dynamics (Pep-GaMD) method, and structural clustering. PepBinding has been demonstrated on seven distinct model peptides. In peptide docking using HPEPDOCK, the peptide backbone root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray structures ranged from 3.8 to 16.0 Å, corresponding to the medium to inaccurate quality models according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria. The Pep-GaMD simulations performed for only 200 ns significantly improved the docking models, resulting in five medium and two acceptable quality models. Therefore, PepBinding is an efficient workflow for predicting peptide binding structures and is publicly available at https://github.com/MiaoLab20/PepBinding.
Collapse
Affiliation(s)
- Jinan Wang
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kushal Koirala
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hung N Do
- Computational Biology Program, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | - Yinglong Miao
- Computational Medicine Program and Department of Pharmacology, University of North Carolina - Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Hansen AL, Theisen FF, Crehuet R, Marcos E, Aghajari N, Willemoës M. Carving out a Glycoside Hydrolase Active Site for Incorporation into a New Protein Scaffold Using Deep Network Hallucination. ACS Synth Biol 2024; 13:862-875. [PMID: 38357862 PMCID: PMC10949244 DOI: 10.1021/acssynbio.3c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
Enzymes are indispensable biocatalysts for numerous industrial applications, yet stability, selectivity, and restricted substrate recognition present limitations for their use. Despite the importance of enzyme engineering in overcoming these limitations, success is often challenged by the intricate architecture of enzymes derived from natural sources. Recent advances in computational methods have enabled the de novo design of simplified scaffolds with specific functional sites. Such scaffolds may be advantageous as platforms for enzyme engineering. Here, we present a strategy for the de novo design of a simplified scaffold of an endo-α-N-acetylgalactosaminidase active site, a glycoside hydrolase from the GH101 enzyme family. Using a combination of trRosetta hallucination, iterative cycles of deep-learning-based structure prediction, and ProteinMPNN sequence design, we designed proteins with 290 amino acids incorporating the active site while reducing the molecular weight by over 100 kDa compared to the initial endo-α-N-acetylgalactosaminidase. Of 11 tested designs, six were expressed as soluble monomers, displaying similar or increased thermostabilities compared to the natural enzyme. Despite lacking detectable enzymatic activity, the experimentally determined crystal structures of a representative design closely matched the design with a root-mean-square deviation of 1.0 Å, with most catalytically important side chains within 2.0 Å. The results highlight the potential of scaffold hallucination in designing proteins that may serve as a foundation for subsequent enzyme engineering.
Collapse
Affiliation(s)
- Anders Lønstrup Hansen
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Frederik Friis Theisen
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Ramon Crehuet
- Institute
for Advanced Chemistry of Catalonia (IQAC), CSIC, Carrer Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Enrique Marcos
- Protein
Design and Modeling Lab, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), CSIC, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Nushin Aghajari
- Molecular
Microbiology and Structural Biochemistry, CNRS, University of Lyon1, UMR5086, 7 Passage du Vercors, F-69367 Lyon CEDEX 07, France
| | - Martin Willemoës
- The
Linderstrøm-Lang Centre for Protein Science, Section for Biomolecular
Sciences, Department of Biology, University
of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| |
Collapse
|
3
|
Papaleo E, Tiberti M, Arnaudi M, Pecorari C, Faienza F, Cantwell L, Degn K, Pacello F, Battistoni A, Lambrughi M, Filomeni G. TRAP1 S-nitrosylation as a model of population-shift mechanism to study the effects of nitric oxide on redox-sensitive oncoproteins. Cell Death Dis 2023; 14:284. [PMID: 37085483 PMCID: PMC10121659 DOI: 10.1038/s41419-023-05780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/23/2023]
Abstract
S-nitrosylation is a post-translational modification in which nitric oxide (NO) binds to the thiol group of cysteine, generating an S-nitrosothiol (SNO) adduct. S-nitrosylation has different physiological roles, and its alteration has also been linked to a growing list of pathologies, including cancer. SNO can affect the function and stability of different proteins, such as the mitochondrial chaperone TRAP1. Interestingly, the SNO site (C501) of TRAP1 is in the proximity of another cysteine (C527). This feature suggests that the S-nitrosylated C501 could engage in a disulfide bridge with C527 in TRAP1, resembling the well-known ability of S-nitrosylated cysteines to resolve in disulfide bridge with vicinal cysteines. We used enhanced sampling simulations and in-vitro biochemical assays to address the structural mechanisms induced by TRAP1 S-nitrosylation. We showed that the SNO site induces conformational changes in the proximal cysteine and favors conformations suitable for disulfide bridge formation. We explored 4172 known S-nitrosylated proteins using high-throughput structural analyses. Furthermore, we used a coarse-grained model for 44 protein targets to account for protein flexibility. This resulted in the identification of up to 1248 proximal cysteines, which could sense the redox state of the SNO site, opening new perspectives on the biological effects of redox switches. In addition, we devised two bioinformatic workflows ( https://github.com/ELELAB/SNO_investigation_pipelines ) to identify proximal or vicinal cysteines for a SNO site with accompanying structural annotations. Finally, we analyzed mutations in tumor suppressors or oncogenes in connection with the conformational switch induced by S-nitrosylation. We classified the variants as neutral, stabilizing, or destabilizing for the propensity to be S-nitrosylated and undergo the population-shift mechanism. The methods applied here provide a comprehensive toolkit for future high-throughput studies of new protein candidates, variant classification, and a rich data source for the research community in the NO field.
Collapse
Affiliation(s)
- Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark.
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Matteo Arnaudi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Chiara Pecorari
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Fiorella Faienza
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Lisa Cantwell
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine Degn
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Francesca Pacello
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Andrea Battistoni
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
- Center for Healthy Aging, Copenhagen University, 2200, Copenhagen, Denmark
| |
Collapse
|
4
|
The Effect of Arginine on the Phase Stability of Aqueous Hen Egg-White Lysozyme Solutions. Int J Mol Sci 2023; 24:ijms24021197. [PMID: 36674727 PMCID: PMC9861001 DOI: 10.3390/ijms24021197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
The effect of arginine on the phase stability of the hen egg-white lysozyme (HEWL) has been studied via molecular dynamics computer simulations, as well as experimentally via cloud-point temperature determination. The experiments show that the addition of arginine increases the stability of the HEWL solutions. The computer simulation results indicate that arginine molecules tend to self-associate. If arginine residues are located on the protein surface, the free arginine molecules stay in their vicinity and prevent the way protein molecules "connect" through them to form clusters. The results are not sensitive to a particular force field and suggest a possible microscopic mechanism of the stabilizing role of arginine as an excipient.
Collapse
|
5
|
Popelier PLA. Non-covalent interactions from a Quantum Chemical Topology perspective. J Mol Model 2022; 28:276. [PMID: 36006513 PMCID: PMC9411098 DOI: 10.1007/s00894-022-05188-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/07/2022] [Indexed: 11/12/2022]
Abstract
About half a century after its little-known beginnings, the quantum topological approach called QTAIM has grown into a widespread, but still not mainstream, methodology of interpretational quantum chemistry. Although often confused in textbooks with yet another population analysis, be it perhaps an elegant but somewhat esoteric one, QTAIM has been enriched with about a dozen other research areas sharing its main mathematical language, such as Interacting Quantum Atoms (IQA) or Electron Localisation Function (ELF), to form an overarching approach called Quantum Chemical Topology (QCT). Instead of reviewing the latter's role in understanding non-covalent interactions, we propose a number of ideas emerging from the full consequences of the space-filling nature of topological atoms, and discuss how they (will) impact on interatomic interactions, including non-covalent ones. The architecture of a force field called FFLUX, which is based on these ideas, is outlined. A new method called Relative Energy Gradient (REG) is put forward, which is able, by computation, to detect which fragments of a given molecular assembly govern the energetic behaviour of this whole assembly. This method can offer insight into the typical balance of competing atomic energies both in covalent and non-covalent case studies. A brief discussion on so-called bond critical points is given, highlighting concerns about their meaning, mainly in the arena of non-covalent interactions.
Collapse
Affiliation(s)
- Paul L A Popelier
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, Great Britain, UK.
| |
Collapse
|
6
|
Joshi H, Prakash MK. Using Atomistic Simulations to Explore the Role of Methylation and ATP in Chemotaxis Signal Transduction. ACS OMEGA 2022; 7:27886-27895. [PMID: 35990422 PMCID: PMC9386827 DOI: 10.1021/acsomega.2c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bacterial chemotaxis mechanism is activated when nutrients bind to surface receptors. The sequence of intra- and interprotein events in this signal cascade from the receptors to the eventual molecular motors has been clearly identified. However, the atomistic details remain elusive, as in general may be expected of intraprotein signal transduction pathways, especially when fibrillar proteins are involved. We performed atomistic calculations of the methyl accepting chemoprotein (MCP)-CheA-CheW multidomain complex from Escherichia coli, simulating the methylated and unmethylated conditions in the chemoreceptors and the ATP-bound and apo conditions of the CheA. Our results indicate that these atomistic simulations, especially with one of the two force fields we tried, capture several relevant features of the downstream effects, such as the methylation favoring an intermediate structure that is more toward a dipped state and increases the chance of ATP hydrolysis. The results thus suggest the sensitivity of the model to reflect the nutrient signal response, a nontrivial validation considering the complexity of the system, encouraging even more detailed studies on the thermodynamic quantification of the effects and the identification of the signaling networks.
Collapse
|
7
|
Sandoval‐Pérez A, Mejía‐Restrepo V, Aponte‐Santamaría C. Thermodynamic stabilization of von Willebrand factor
A1
domain induces protein loss of function. Proteins 2022; 90:2058-2066. [DOI: 10.1002/prot.26397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Angélica Sandoval‐Pérez
- Max Planck Tandem Group in Computational Biophysics Universidad de Los Andes Bogotá Colombia
| | | | | |
Collapse
|
8
|
Mendoza-Martinez C, Papadourakis M, Llabrés S, Gupta AA, Barlow PN, Michel J. Energetics of a protein disorder-order transition in small molecule recognition. Chem Sci 2022; 13:5220-5229. [PMID: 35655546 PMCID: PMC9093188 DOI: 10.1039/d2sc00028h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Many proteins recognise other proteins via mechanisms that involve the folding of intrinsically disordered regions upon complex formation. Here we investigate how the selectivity of a drug-like small molecule arises from its modulation of a protein disorder-to-order transition. Binding of the compound AM-7209 has been reported to confer order upon an intrinsically disordered ‘lid’ region of the oncoprotein MDM2. Calorimetric measurements revealed that truncation of the lid region of MDM2 increases the apparent dissociation constant of AM-7209 250-fold. By contrast, lid truncation has little effect on the binding of the ligand Nutlin-3a. Insights into these differential binding energetics were obtained via a complete thermodynamic analysis that featured adaptive absolute alchemical free energy of binding calculations with enhanced-sampling molecular dynamics simulations. The simulations reveal that in apo MDM2 the ordered lid state is energetically disfavoured. AM-7209, but not Nutlin-3a, shows a significant energetic preference for ordered lid conformations, thus shifting the balance towards ordering of the lid in the AM-7209/MDM2 complex. The methodology reported herein should facilitate broader targeting of intrinsically disordered regions in medicinal chemistry. Molecular simulations and biophysical measurements elucidate why the ligand AM-7209 orders a disordered region of the protein MDM2 on binding. This work expands strategies available to medicinal chemists for targeting disordered proteins.![]()
Collapse
Affiliation(s)
- Cesar Mendoza-Martinez
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Michail Papadourakis
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Salomé Llabrés
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Arun A Gupta
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Paul N Barlow
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
9
|
Raubenolt BA, Islam NN, Summa CM, Rick SW. Molecular dynamics simulations of the flexibility and inhibition of SARS-CoV-2 NSP 13 helicase. J Mol Graph Model 2022; 112:108122. [PMID: 35021142 PMCID: PMC8730789 DOI: 10.1016/j.jmgm.2022.108122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 11/25/2022]
Abstract
The helicase protein of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is both a good potential drug target and very flexible. The flexibility, and therefore its function, could be reduced through knowledge of these motions and identification of allosteric pockets. Using molecular dynamics simulations with enhanced sampling, we determined key modes of motion and sites on the protein that are at the interface between flexible domains of the proteins. We developed an approach to map the principal components of motion onto the surface of a potential binding pocket to help in the identification of allosteric sites.
Collapse
Affiliation(s)
- Bryan A Raubenolt
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| | - Naeyma N Islam
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA
| | - Christoper M Summa
- Department of Computer Science, University of New Orleans, New Orleans, LA, 70148, USA
| | - Steven W Rick
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
10
|
Trapl D, Krupička M, Višňovský V, Hozzová J, Ol'ha J, Křenek A, Spiwok V. Property Map Collective Variable as a Useful Tool for a Force Field Correction. J Chem Inf Model 2022; 62:567-576. [PMID: 35112877 DOI: 10.1021/acs.jcim.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accuracy of biomolecular simulations depends on the accuracy of an empirical molecular mechanics potential known as a force field: a set of parameters and expressions to estimate the potential from atomic coordinates. Accurate parametrization of force fields for small organic molecules is a challenge due to their high diversity. One of the possible approaches is to apply a correction to the existing force fields. Here, we propose an approach to estimate the density functional theory (DFT)-derived force field correction which is calculated during the run of molecular dynamics without significantly affecting its speed. Using the formula known as a property map collective variable, we approximate the force field correction by a weighted average of this force field correction calculated only for a small series of reference structures. To validate this method, we used seven AMBER force fields, and we show how it is possible to convert one force field to behave like the other one. We also present the force field correction for the important anticancer drug Imatinib as a use case example. Our method appears to be suitable for adjusting the force field for general drug-like molecules. We provide a pipeline that generates the correction; this pipeline is available at https://pmcvff-correction.cerit-sc.cz/.
Collapse
Affiliation(s)
- Dalibor Trapl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
| | - Martin Krupička
- Department of Organic Chemistry, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
| | - Vladimír Višňovský
- Institute of Computer Science, Masaryk University, Botanická 554/68a, Brno 602 00, Czech Republic
| | - Jana Hozzová
- Institute of Computer Science, Masaryk University, Botanická 554/68a, Brno 602 00, Czech Republic
| | - Jaroslav Ol'ha
- Institute of Computer Science, Masaryk University, Botanická 554/68a, Brno 602 00, Czech Republic
| | - Aleš Křenek
- Institute of Computer Science, Masaryk University, Botanická 554/68a, Brno 602 00, Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technická 5, Prague 6 166 28, Czech Republic
| |
Collapse
|
11
|
Noble Jesus C, Evans R, Forth J, Estarellas C, Gervasio FL, Battaglia G. Amphiphilic Histidine-Based Oligopeptides Exhibit pH-Reversible Fibril Formation. ACS Macro Lett 2021; 10:984-989. [PMID: 34422455 PMCID: PMC8375021 DOI: 10.1021/acsmacrolett.1c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
![]()
We report the design,
simulation, synthesis, and reversible self-assembly
of nanofibrils using polyhistidine-based oligopeptides. The inclusion
of aromatic amino acids in the histidine block produces distinct antiparallel
β-strands that lead to the formation of amyloid-like fibrils.
The structures undergo self-assembly in response to a change in pH.
This creates the potential to produce well-defined fibrils for biotechnological
and biomedical applications that are pH-responsive in a physiologically
relevant range.
Collapse
Affiliation(s)
- Carlos Noble Jesus
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Institute for the Physics of the Living System, University College London, London WC1E 6BT, United Kingdom
| | - Rhys Evans
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Joe Forth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Institute for the Physics of the Living System, University College London, London WC1E 6BT, United Kingdom
| | - Carolina Estarellas
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
- Institute for the Physics of the Living System, University College London, London WC1E 6BT, United Kingdom
- Institute for Bioengineering for Catalonia, The Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
12
|
Xu Y, Huang J. Validating the CHARMM36m protein force field with LJ-PME reveals altered hydrogen bonding dynamics under elevated pressures. Commun Chem 2021; 4:99. [PMID: 36697521 PMCID: PMC9814493 DOI: 10.1038/s42004-021-00537-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/08/2021] [Indexed: 01/28/2023] Open
Abstract
The pressure-temperature phase diagram is important to our understanding of the physics of biomolecules. Compared to studies on temperature effects, studies of the pressure dependence of protein dynamic are rather limited. Molecular dynamics (MD) simulations with fine-tuned force fields (FFs) offer a powerful tool to explore the influence of thermodynamic conditions on proteins. Here we evaluate the transferability of the CHARMM36m (C36m) protein force field at varied pressures compared with NMR data using ubiquitin as a model protein. The pressure dependences of J couplings for hydrogen bonds and order parameters for internal motion are in good agreement with experiment. We demonstrate that the C36m FF combined with the Lennard-Jones particle-mesh Ewald (LJ-PME) method is suitable for simulations in a wide range of temperature and pressure. As the ubiquitin remains stable up to 2500 bar, we identify the mobility and stability of different hydrogen bonds in response to pressure. Based on those results, C36m is expected to be applied to more proteins in the future to further investigate protein dynamics under elevated pressures.
Collapse
Affiliation(s)
- You Xu
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Jing Huang
- grid.494629.40000 0004 8008 9315Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,Westlake AI Therapeutics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| |
Collapse
|
13
|
Feng JJ, Chen JN, Kang W, Wu YD. Accurate Structure Prediction for Protein Loops Based on Molecular Dynamics Simulations with RSFF2C. J Chem Theory Comput 2021; 17:4614-4628. [PMID: 34170125 DOI: 10.1021/acs.jctc.1c00341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein loops, connecting the α-helices and β-strands, are involved in many important biological processes. However, due to their conformational flexibility, it is still challenging to accurately determine three-dimensional (3D) structures of long loops experimentally and computationally. Herein, we present a systematic study of the protein loop structure prediction via a total of ∼850 μs molecular dynamics (MD) simulations. For a set of 15 long (10-16 residues) and solvent-exposed loops, we first evaluated the performance of four state-of-the-art loop modeling algorithms, DaReUS-Loop, Sphinx, Rosetta-NGK, and MODELLER, on each loop, and none of them could accurately predict the structures for most loops. Then, temperature replica exchange molecular dynamics (REMD) simulations were conducted with three recent force fields, RSFF2C with TIP3P water model, CHARMM36m with CHARMM-modified TIP3P, and AMBER ff19SB with OPC. We found that our recently developed residue-specific force field RSFF2C performed the best and successfully predicted 12 out of 15 loops with a root-mean-square deviation (RMSD) < 1.5 Å. As an alternative with lower computational cost, normal MD simulations at high temperatures (380, 500, and 620 K) were investigated. Temperature-dependent performance was observed for each force field, and, for RSFF2C+TIP3P, we found that three independent 100-ns MD simulations at 500 K gave comparable results with REMD simulations. These results suggest that MD simulations, especially with enhanced sampling techniques such as replica exchange, with the RSFF2C force field could be useful for accurate loop structure prediction.
Collapse
Affiliation(s)
- Jia-Jie Feng
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jia-Nan Chen
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Wei Kang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
14
|
Ding C, Wang S, Zhang Z. Integrating an Enhanced Sampling Method and Small-Angle X-Ray Scattering to Study Intrinsically Disordered Proteins. Front Mol Biosci 2021; 8:621128. [PMID: 34150843 PMCID: PMC8213455 DOI: 10.3389/fmolb.2021.621128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/08/2021] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) have been paid more and more attention over the past decades because they are involved in a multitude of crucial biological functions. Despite their functional importance, IDPs are generally difficult to investigate because they are very flexible and lack stable structures. Computer simulation may serve as a useful tool in studying IDPs. With the development of computer software and hardware, computational methods, such as molecular dynamics (MD) simulations, are popularly used. However, there is a sampling problem in MD simulations. In this work, this issue is investigated using an IDP called unique long region 11 (UL11), which is the conserved outer tegument component from herpes simplex virus 1. After choosing a proper force field and water model that is suitable for simulating IDPs, integrative modeling by combining an enhanced sampling method and experimental data like small-angle X-ray scattering (SAXS) is utilized to efficiently sample the conformations of UL11. The simulation results are in good agreement with experimental data. This work may provide a general protocol to study structural ensembles of IDPs.
Collapse
Affiliation(s)
- Chengtao Ding
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, National Science Center for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Zhiyong Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, National Science Center for Physical Sciences at Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
15
|
Argudo PG, Giner-Casares JJ. Folding and self-assembly of short intrinsically disordered peptides and protein regions. NANOSCALE ADVANCES 2021; 3:1789-1812. [PMID: 36133101 PMCID: PMC9417027 DOI: 10.1039/d0na00941e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/17/2021] [Indexed: 05/15/2023]
Abstract
Proteins and peptide fragments are highly relevant building blocks in self-assembly for nanostructures with plenty of applications. Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are defined by the absence of a well-defined secondary structure, yet IDPs/IDRs show a significant biological activity. Experimental techniques and computational modelling procedures for the characterization of IDPs/IDRs are discussed. Directed self-assembly of IDPs/IDRs allows reaching a large variety of nanostructures. Hybrid materials based on the derivatives of IDPs/IDRs show a promising performance as alternative biocides and nanodrugs. Cell mimicking, in vivo compartmentalization, and bone regeneration are demonstrated for IDPs/IDRs in biotechnological applications. The exciting possibilities of IDPs/IDRs in nanotechnology with relevant biological applications are shown.
Collapse
Affiliation(s)
- Pablo G Argudo
- Université de Bordeaux, CNRS, Bordeaux INP, LCPO 16 Avenue Pey-Berland 33600 Pessac France
| | - Juan J Giner-Casares
- Departamento de Química Física y T. Aplicada, Instituto Universitario de Nanoquímica IUNAN, Facultad de Ciencias, Universidad de Córdoba (UCO) Campus de Rabanales, Ed. Marie Curie E-14071 Córdoba Spain
| |
Collapse
|
16
|
Wang W. Recent advances in atomic molecular dynamics simulation of intrinsically disordered proteins. Phys Chem Chem Phys 2021; 23:777-784. [PMID: 33355572 DOI: 10.1039/d0cp05818a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intrinsically disordered proteins (IDPs) play important roles in cellular functions. The inherent structural heterogeneity of IDPs makes the high-resolution experimental characterization of IDPs extremely difficult. Molecular dynamics (MD) simulation could provide the atomic-level description of the structural and dynamic properties of IDPs. This perspective reviews the recent progress in atomic MD simulation studies of IDPs, including the development of force fields and sampling methods, as well as applications in IDP-involved protein-protein interactions. The employment of large-scale simulations and advanced sampling techniques allows more accurate estimation of the thermodynamics and kinetics of IDP-mediated protein interactions, and the holistic landscape of the binding process of IDPs is emerging.
Collapse
Affiliation(s)
- Wenning Wang
- Department of Chemistry, Multiscale Research Institute of Complex Systems and Institute of Biomedical Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
17
|
Oroguchi T, Oide M, Wakabayashi T, Nakasako M. Assessment of Force Field Accuracy Using Cryogenic Electron Microscopy Data of Hyper-thermostable Glutamate Dehydrogenase. J Phys Chem B 2020; 124:8479-8494. [PMID: 32841031 DOI: 10.1021/acs.jpcb.0c04464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamics (MD) simulations in biophysically relevant time scales of microseconds is a powerful tool for studying biomolecular processes, but results often display force field dependency. Therefore, assessment of force field accuracy using experimental data of biomolecules in solution is essential for simulation studies. Here, we propose the use of structural models obtained via cryo-electron microscopy (cryoEM), which provides biomolecular structures in vitreous ice mimicking the environment in solution. The accuracy of the AMBER (ff99SB-ILDN-NMR, ff14SB, ff15ipq, and ff15FB) and CHARMM (CHARMM22 and CHARMM36m) force fields was assessed by comparing their MD trajectories with the cryoEM data of thermostable hexameric glutamate dehydrogenase (GDH), which included a cryoEM map at a resolution of approximately 3 Å and structure models of subunits reflecting metastable conformations in domain motion occurring in GDH. In the assessment, we validated the force fields with respect to the reproducibility and stability of secondary structures and intersubunit interactions in the cryoEM data. Furthermore, we evaluated the force fields regarding the reproducibility of the energy landscape in the domain motion expected from the cryoEM data. As a result, among the six force fields, ff15FB and ff99SB-ILDN-NMR displayed good agreement with the experiment. The present study demonstrated the advantages of the high-resolution cryoEM map and suggested the optimal force field to reproduce experimentally observed protein structures.
Collapse
Affiliation(s)
- Tomotaka Oroguchi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Mao Oide
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Taiki Wakabayashi
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Masayoshi Nakasako
- Department of Physics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoko-ku, Yokohama, Kanagawa 223-8522, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
18
|
Galdadas I, Gervasio FL, Cournia Z. Unravelling the effect of the E545K mutation on PI3Kα kinase. Chem Sci 2020; 11:3511-3515. [PMID: 34703536 PMCID: PMC8493679 DOI: 10.1039/c9sc05903b] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
PI3Kα controls several cellular processes and its aberrant signalling is implicated in tumorigenesis. One of its hotspot mutations, E545K, increases PI3Kα lipid kinase activity, but its mode of action is only partially understood. Here, we perform biased and unbiased molecular dynamics simulations of PI3Kα and uncover, for the first time, the free energy landscape of the E545K PI3Kα mutant. We reveal the mechanism by which E545K leads to PI3Kα activation in atomic-level detail, which is considerably more complex than previously thought.
Collapse
Affiliation(s)
- Ioannis Galdadas
- Department of Chemistry, University College London London WC1E 6BT UK
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London London WC1E 6BT UK
- Institute of Structural and Molecular Biology, University College London London WC1E 6BT UK
- Pharmaceutical Sciences, University of Geneva Geneva CH-1211 Switzerland
| | - Zoe Cournia
- Biomedical Research Foundation, Academy of Athens Athens 11527 Greece
| |
Collapse
|
19
|
Kuzmanic A, Bowman GR, Juarez-Jimenez J, Michel J, Gervasio FL. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Acc Chem Res 2020; 53:654-661. [PMID: 32134250 DOI: 10.1021/acs.accounts.9b00613] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This Account highlights recent advances and discusses major challenges in investigations of cryptic (hidden) binding sites by molecular simulations. Cryptic binding sites are not visible in protein targets crystallized without a ligand and only become visible crystallographically upon binding events. These sites have been shown to be druggable and might provide a rare opportunity to target difficult proteins. However, due to their hidden nature, they are difficult to find through experimental screening. Computational methods based on atomistic molecular simulations remain one of the best approaches to identify and characterize cryptic binding sites. However, not all methods are equally efficient. Some are more apt at quickly probing protein dynamics but do not provide thermodynamic or druggability information, while others that are able to provide such data are demanding in terms of time and resources. Here, we review the recent contributions of mixed-solvent simulations, metadynamics, Markov state models, and other enhanced sampling methods to the field of cryptic site identification and characterization. We discuss how these methods were able to provide precious information on the nature of the site opening mechanisms, to predict previously unknown sites which were used to design new ligands, and to compute the free energy landscapes and kinetics associated with the opening of the sites and the binding of the ligands. We highlight the potential and the importance of such predictions in drug discovery, especially for difficult ("undruggable") targets. We also discuss the major challenges in the field and their possible solutions.
Collapse
Affiliation(s)
- Antonija Kuzmanic
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Jordi Juarez-Jimenez
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Julien Michel
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh EH9 9FJ, United Kingdom
| | - Francesco L. Gervasio
- Department of Chemistry and Institute of Structural and Molecular Biology, University College London, London WC1E 0AJ, United Kingdom
- Pharmaceutical Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
20
|
Rinaldi S, Colombo G, Paladino A. Mechanistic Model for the Hsp90-Driven Opening of Human Argonaute. J Chem Inf Model 2020; 60:1469-1480. [PMID: 32096993 PMCID: PMC7997374 DOI: 10.1021/acs.jcim.0c00053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The assembly of RNA-induced silencing complex (RISC) is a key process in small RNA-mediated gene silencing. Loading of small RNAs into Argonaute (Ago), the key player protein in the process, has been shown to depend on the Hsp90 chaperone machinery. Experimental single-molecule data indicate that ATP binding to the chaperone facilitates the conformational changes leading to the open state of Ago essential to form a complex with small-RNA duplexes. Yet, no atomic-level description of the dynamic mechanisms and protein-protein interactions underpinning Hsp90-mediated Ago conformational activation is available. Here we investigate the functionally oriented structural and dynamic features of Hsp90-human Ago (hAgo2) complexes in different ligand states by integrating protein-protein docking techniques, all-atom MD simulations, and novel methods of analysis of protein internal dynamics and energetics. On this basis, we develop a structural-dynamic model of the mechanisms underlying the chaperone-assisted human RISC assembly. Our approach unveils the large conformational variability displayed by hAgo2 in the unbound vs the Hsp90-bound states. In this context, several hAgo2 states are found to coexist in isolation, while Hsp90 selects and stabilizes the active form. Hsp90 binding modulates the conformational plasticity of hAgo2 (favoring its opening) by modifying the patterns of hAgo2 intramolecular interactions. Finally, we identify a series of experimentally verifiable key sites that can be mutated to modulate Hsp90-mediated hAgo2 conformational response and ability to bind RNA.
Collapse
Affiliation(s)
- Silvia Rinaldi
- Istituto di Science e Tecnologie Chimiche "Giulio Natta" SCITEC, CNR, via Mario Bianco 9, 20131, Milan, Italy
| | - Giorgio Colombo
- Istituto di Science e Tecnologie Chimiche "Giulio Natta" SCITEC, CNR, via Mario Bianco 9, 20131, Milan, Italy.,Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Antonella Paladino
- Istituto di Science e Tecnologie Chimiche "Giulio Natta" SCITEC, CNR, via Mario Bianco 9, 20131, Milan, Italy.,BIOGEM Istituto di Ricerche Genetiche "G. Salvatore", via Camporeale, 83031 Ariano Irpino, Italy
| |
Collapse
|
21
|
Yu L, Li DW, Brüschweiler R. Balanced Amino-Acid-Specific Molecular Dynamics Force Field for the Realistic Simulation of Both Folded and Disordered Proteins. J Chem Theory Comput 2019; 16:1311-1318. [DOI: 10.1021/acs.jctc.9b01062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Vincent MA, Silva AF, Popelier PLA. Atomic Partitioning of the MPn (n = 2, 3, 4) Dynamic Electron Correlation Energy by the Interacting Quantum Atoms Method: A Fast and Accurate Electrostatic Potential Integral Approach. J Comput Chem 2019; 40:2793-2800. [PMID: 31373709 PMCID: PMC6900022 DOI: 10.1002/jcc.26037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 11/13/2022]
Abstract
Recently, the quantum topological energy partitioning method called interacting quantum atoms (IQA) has been extended to MPn (n = 2, 3, 4) wave functions. This enables the extraction of chemical insight related to dynamic electron correlation. The large computational expense of the IQA-MPn approach is compensated by the advantages that IQA offers compared to older nontopological energy decomposition schemes. This expense is problematic in the construction of a machine learning training set to create kriging models for topological atoms. However, the algorithm presented here markedly accelerates the calculation of atomically partitioned electron correlation energies. Then again, the algorithm cannot calculate pairwise interatomic energies because it applies analytical integrals over whole space (rather than over atomic volumes). However, these pairwise energies are not needed in the quantum topological force field FFLUX, which only uses the energy of an atom interacting with all remaining atoms of the system that it is part of. Thus, it is now feasible to generate accurate and sizeable training sets at MPn level of theory. © 2019 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mark A. Vincent
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
- School of ChemistryThe University of ManchesterManchesterM13 9PLUK
| | - Arnaldo F. Silva
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
- School of ChemistryThe University of ManchesterManchesterM13 9PLUK
| | - Paul L. A. Popelier
- Manchester Institute of BiotechnologyThe University of ManchesterManchesterM1 7DNUK
- School of ChemistryThe University of ManchesterManchesterM13 9PLUK
| |
Collapse
|
23
|
Wang J, Alekseenko A, Kozakov D, Miao Y. Improved Modeling of Peptide-Protein Binding Through Global Docking and Accelerated Molecular Dynamics Simulations. Front Mol Biosci 2019; 6:112. [PMID: 31737642 PMCID: PMC6835073 DOI: 10.3389/fmolb.2019.00112] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 01/31/2023] Open
Abstract
Peptides mediate up to 40% of known protein-protein interactions in higher eukaryotes and play a key role in cellular signaling, protein trafficking, immunology, and oncology. However, it is challenging to predict peptide-protein binding with conventional computational modeling approaches, due to slow dynamics and high peptide flexibility. Here, we present a prototype of the approach which combines global peptide docking using ClusPro PeptiDock and all-atom enhanced simulations using Gaussian accelerated molecular dynamics (GaMD). For three distinct model peptides, the lowest backbone root-mean-square deviations (RMSDs) of their bound conformations relative to X-ray structures obtained from PeptiDock were 3.3–4.8 Å, being medium quality predictions according to the Critical Assessment of PRediction of Interactions (CAPRI) criteria. GaMD simulations refined the peptide-protein complex structures with significantly reduced peptide backbone RMSDs of 0.6–2.7 Å, yielding two high quality (sub-angstrom) and one medium quality models. Furthermore, the GaMD simulations identified important low-energy conformational states and revealed the mechanism of peptide binding to the target proteins. Therefore, PeptiDock+GaMD is a promising approach for exploring peptide-protein interactions.
Collapse
Affiliation(s)
- Jinan Wang
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| | - Andrey Alekseenko
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Dima Kozakov
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States.,Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Yinglong Miao
- Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States
| |
Collapse
|
24
|
Yalinca H, Gehin CJC, Oleinikovas V, Lashuel HA, Gervasio FL, Pastore A. The Role of Post-translational Modifications on the Energy Landscape of Huntingtin N-Terminus. Front Mol Biosci 2019; 6:95. [PMID: 31632982 PMCID: PMC6779701 DOI: 10.3389/fmolb.2019.00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Huntington disease is a neurodegenerative disease characterized by a polymorphic tract of polyglutamine repeats in exon 1 of the huntingtin protein, which is thought to be responsible for protein aggregation and neuronal death. The polyglutamine tract is preceded by a 17-residue sequence that is intrinsically disordered. This region is subject to phosphorylation, acetylation and other post-translational modifications in vivo, which modulate its secondary structure, aggregation and, subcellular localization. We used Molecular Dynamics simulations with a novel Hamiltonian-replica-exchange-based enhanced sampling method, SWISH, and an optimal combination of water and protein force fields to study the effects of phosphorylation and acetylation as well as cross-talk between these modifications on the huntingtin N-terminus. The simulations, validated by circular dichroism, were used to formulate a mechanism by which the modifications influence helical conformations. Our findings have implications for understanding the structural basis underlying the effect of PTMs in the aggregation and cellular properties of huntingtin.
Collapse
Affiliation(s)
- Havva Yalinca
- Department of Chemistry, University College London, London, United Kingdom
| | - Charlotte Julie Caroline Gehin
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | | | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Faculty of Life Sciences, Brain Mind Institute, EPFL, Lausanne, Switzerland
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London, United Kingdom.,Research Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | | |
Collapse
|
25
|
Dagil L, Troelsen KS, Bolt G, Thim L, Wu B, Zhao X, Tuddenham EGD, Nielsen TE, Tanner DA, Faber JH, Breinholt J, Rasmussen JE, Hansen DF. Interaction Between the a3 Region of Factor VIII and the TIL'E' Domains of the von Willebrand Factor. Biophys J 2019; 117:479-489. [PMID: 31349985 PMCID: PMC6697466 DOI: 10.1016/j.bpj.2019.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 01/25/2023] Open
Abstract
The von Willebrand factor (VWF) and coagulation factor VIII (FVIII) are intricately involved in hemostasis. A tight, noncovalent complex between VWF and FVIII prolongs the half-life of FVIII in plasma, and failure to form this complex leads to rapid clearance of FVIII and bleeding diatheses such as hemophilia A and von Willebrand disease (VWD) type 2N. High-resolution insight into the complex between VWF and FVIII has so far been strikingly lacking. This is particularly the case for the flexible a3 region of FVIII, which is imperative for high-affinity binding. Here, a structural and biophysical characterization of the interaction between VWF and FVIII is presented with focus on two of the domains that have been proven pivotal for mediating the interaction, namely the a3 region of FVIII and the TIL'E' domains of VWF. Binding between the FVIII a3 region and VWF TIL'E' was here observed using NMR spectroscopy, where chemical shift changes were localized to two β-sheet regions on the edge of TIL'E' upon FVIII a3 region binding. Isothermal titration calorimetry and NMR spectroscopy were used to characterize the interaction between FVIII and TIL'E' as well as mutants of TIL'E', which further highlights the importance of the β-sheet region of TIL'E' for high-affinity binding. Overall, the results presented provide new insight into the role the FVIII a3 region plays for complex formation between VWF and FVIII and the β-sheet region of TIL'E' is shown to be important for FVIII binding. Thus, the results pave the way for further high-resolution insights into this imperative complex.
Collapse
Affiliation(s)
- Lisbeth Dagil
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Kathrin S Troelsen
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gert Bolt
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Lars Thim
- Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Bo Wu
- Novo Nordisk Research Center China, Beijing, China
| | - Xin Zhao
- Novo Nordisk Research Center China, Beijing, China
| | - Edward G D Tuddenham
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom; Katharine Dormandy, Haemophilia Centre and Thrombosis Unit, Royal Free Hospital NHS Trust, London, United Kingdom
| | | | - David A Tanner
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | - D Flemming Hansen
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom.
| |
Collapse
|
26
|
Liem SY, Popelier PLA. The influence of water potential in simulation: a catabolite activator protein case study. J Mol Model 2019; 25:216. [PMID: 31292786 PMCID: PMC7406532 DOI: 10.1007/s00894-019-4095-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/13/2019] [Indexed: 10/27/2022]
Abstract
We present a rare comparison of structures of the same protein but generated by different potentials. We used four popular water potentials (SPC, TIP3P, TIP4P, TIP5P) in conjunction with the equally popular ff99SB. However, the ff12SB protein potential was used with TI3P only. Simulations (60 ns) were run on the catabolite activator protein (CAP), which is a textbook case of allosteric interaction. Overall, all potentials generated largely similar structures but failed to reproduce a crucial structural feature determined by NMR experiment. This example shows the need to develop next-generation potentials. Graphical abstract Catabolite activator protein.
Collapse
Affiliation(s)
- Steven Y Liem
- Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess Street, Manchester, M1 7DN, Great Britain.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, Great Britain
| | - Paul L A Popelier
- Manchester Institute of Biotechnology (MIB), University of Manchester, 131 Princess Street, Manchester, M1 7DN, Great Britain. .,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, Great Britain.
| |
Collapse
|