1
|
Shen K, Sun K, Gelin MF, Zhao Y. 2D Electronic Spectroscopy Uncovers 2D Materials: Theoretical Study of Nanocavity-Integrated Monolayer Semiconductors. J Phys Chem Lett 2025; 16:3264-3273. [PMID: 40118656 DOI: 10.1021/acs.jpclett.5c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Transition metal dichalcogenides (TMDs) have emerged as promising 2D semiconductors due to their strong excitonic effects, spin-valley coupling, and tunable light-matter interactions. Here, we employ a fully quantum, numerically "exact" multi-Davydov Ansatz approach to simulate two-dimensional electronic spectroscopy signals in hBN-encapsulated WSe2 monolayers integrated with a tunable nanocavity. By incorporating both momentum-bright and momentum-dark excitons alongside detailed phonon dispersion, our model captures vibrational resonances and exciton-polariton behaviors, enabling the evaluation of beating maps (3D spectra) that disentangle ground-state bleach and stimulated emission pathways. The results highlight the essential role of vibronic coherence in TMD monolayers and offer quantitative guidance for the design of next-generation optoelectronic devices based on cavity-coupled 2D materials.
Collapse
Affiliation(s)
- Kaijun Shen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
2
|
Schultz JD, Yuly JL, Arsenault EA, Parker K, Chowdhury SN, Dani R, Kundu S, Nuomin H, Zhang Z, Valdiviezo J, Zhang P, Orcutt K, Jang SJ, Fleming GR, Makri N, Ogilvie JP, Therien MJ, Wasielewski MR, Beratan DN. Coherence in Chemistry: Foundations and Frontiers. Chem Rev 2024; 124:11641-11766. [PMID: 39441172 DOI: 10.1021/acs.chemrev.3c00643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Coherence refers to correlations in waves. Because matter has a wave-particle nature, it is unsurprising that coherence has deep connections with the most contemporary issues in chemistry research (e.g., energy harvesting, femtosecond spectroscopy, molecular qubits and more). But what does the word "coherence" really mean in the context of molecules and other quantum systems? We provide a review of key concepts, definitions, and methodologies, surrounding coherence phenomena in chemistry, and we describe how the terms "coherence" and "quantum coherence" refer to many different phenomena in chemistry. Moreover, we show how these notions are related to the concept of an interference pattern. Coherence phenomena are indeed complex, and ambiguous definitions may spawn confusion. By describing the many definitions and contexts for coherence in the molecular sciences, we aim to enhance understanding and communication in this broad and active area of chemistry.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathon L Yuly
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eric A Arsenault
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kelsey Parker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Reshmi Dani
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Sohang Kundu
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
| | - Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Zhendian Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jesús Valdiviezo
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Sección Química, Departamento de Ciencias, Pontificia Universidad Católica del Perú, San Miguel, Lima 15088, Peru
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Kaydren Orcutt
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Bioproducts Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| | - Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Queens, New York 11367, United States
- Chemistry and Physics PhD programs, Graduate Center, City University of New York, New York, New York 10016, United States
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nancy Makri
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Illinois Quantum Information Science and Technology Center, University of Illinois, Urbana, Illinois 61801, United States
| | - Jennifer P Ogilvie
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michael J Therien
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Sheng Z, Jiang T, Li W, Shuai Z. TD-DMRG Study of Exciton Dynamics with both Thermal and Static Disorders for Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024. [PMID: 39087905 DOI: 10.1021/acs.jctc.4c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photosynthesis is a fundamental process that converts solar energy into chemical energy. Understanding the microscopic mechanisms of energy transfer in photosynthetic systems is crucial for the development of novel optoelectronic materials. Simulating these processes poses significant challenges due to the intricate interactions between electrons and phonons, compounded by static disorder. In this work, we present a numerically nearly exact study using the time-dependent density matrix renormalization group (TD-DMRG) method to simulate the quantum dynamics of the Fenna-Matthews-Olson (FMO) complex considering an eight-site model with both thermal and static disorders. We employ the thermo-field dynamics formalism for temperature effects. We merge all electronic interactions into one large matrix product state (MPS) site, boosting accuracy efficiently without increasing complexity. Previous combined experimental and computational studies indicated that the static disorders range from 30 to 90 cm-1 for different FMO sites. We employ a Gaussian distribution and the auxiliary bosonic operator approach to consider the static disorder in our TD-DMRG algorithm. We investigate the impact of different initial excitation sites, temperatures, and degrees of static disorder on the exciton dynamics and temporal coherence. It is found that under the influence of the experimentally determined static disorder strength, the exciton population evolution shows a non-negligible difference at zero temperature, while it is hardly affected at room temperature.
Collapse
Affiliation(s)
- Zirui Sheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| | - Weitang Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Zhigang Shuai
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084 Beijing, P. R. China
| |
Collapse
|
4
|
Takahashi H, Borrelli R, Gelin MF, Chen L. Finite temperature dynamics in a polarized sub-Ohmic heat bath: A hierarchical equations of motion-tensor train study. J Chem Phys 2024; 160:164106. [PMID: 38656440 DOI: 10.1063/5.0202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
5
|
Hou E, Sun K, Gelin MF, Zhao Y. Finite temperature dynamics of the Holstein-Tavis-Cummings model. J Chem Phys 2024; 160:084116. [PMID: 38421073 DOI: 10.1063/5.0193471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
By employing the numerically accurate multiple Davydov Ansatz (mDA) formalism in combination with the thermo-field dynamics (TFD) representation of quantum mechanics, we systematically explore the influence of three parameters-temperature, photonic-mode detuning, and qubit-phonon coupling-on population dynamics and absorption spectra of the Holstein-Tavis-Cummings (HTC) model. It is found that elevated qubit-phonon couplings and/or temperatures have a similar impact on all dynamic observables: they suppress the amplitudes of Rabi oscillations in photonic populations as well as broaden the peaks and decrease their intensities in the absorption spectra. Our results unequivocally demonstrate that the HTC dynamics is very sensitive to the concerted variation of the three aforementioned parameters, and this finding can be used for fine-tuning polaritonic transport. The developed mDA-TFD methodology can be efficiently applied for modeling, predicting, optimizing, and comprehensively understanding dynamic and spectroscopic responses of actual molecular systems in microcavities.
Collapse
Affiliation(s)
- Erqin Hou
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Yang J, Gelin MF, Chen L, Šanda F, Thyrhaug E, Hauer J. Two-dimensional fluorescence excitation spectroscopy: A novel technique for monitoring excited-state photophysics of molecular species with high time and frequency resolution. J Chem Phys 2023; 159:074201. [PMID: 37581414 DOI: 10.1063/5.0156297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
We propose a novel UV/Vis femtosecond spectroscopic technique, two-dimensional fluorescence-excitation (2D-FLEX) spectroscopy, which combines spectral resolution during the excitation process with exclusive monitoring of the excited-state system dynamics at high time and frequency resolution. We discuss the experimental feasibility and realizability of 2D-FLEX, develop the necessary theoretical framework, and demonstrate the high information content of this technique by simulating the 2D-FLEX spectra of a model four-level system and the Fenna-Matthews-Olson antenna complex. We show that the evolution of 2D-FLEX spectra with population time directly monitors energy transfer dynamics and can thus yield direct qualitative insight into the investigated system. This makes 2D-FLEX a highly efficient instrument for real-time monitoring of photophysical processes in polyatomic molecules and molecular aggregates.
Collapse
Affiliation(s)
- Jianmin Yang
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - František Šanda
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 12116 Prague, Czech Republic
| | - Erling Thyrhaug
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Jürgen Hauer
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|
7
|
Zhan S, Gelin MF, Huang X, Sun K. Ab initio simulation of peak evolutions and beating maps for electronic two-dimensional signals of a polyatomic chromophore. J Chem Phys 2023; 158:2890773. [PMID: 37191214 DOI: 10.1063/5.0150387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023] Open
Abstract
By employing the doorway-window (DW) on-the-fly simulation protocol, we performed ab initio simulations of peak evolutions and beating maps of electronic two-dimensional (2D) spectra of a polyatomic molecule in the gas phase. As the system under study, we chose pyrazine, which is a paradigmatic example of photodynamics dominated by conical intersections (CIs). From the technical perspective, we demonstrate that the DW protocol is a numerically efficient methodology suitable for simulations of 2D spectra for a wide range of excitation/detection frequencies and population times. From the information content perspective, we show that peak evolutions and beating maps not only reveal timescales of transitions through CIs but also pinpoint the most relevant coupling and tuning modes active at these CIs.
Collapse
Affiliation(s)
- Siying Zhan
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xiang Huang
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | - Kewei Sun
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
8
|
Ma F, Romero E, Jones MR, Novoderezhkin VI, Yu LJ, van Grondelle R. Dynamics of diverse coherences in primary charge separation of bacterial reaction center at 77 K revealed by wavelet analysis. PHOTOSYNTHESIS RESEARCH 2022; 151:225-234. [PMID: 34709567 DOI: 10.1007/s11120-021-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
To uncover the mechanism behind the high photo-electronic conversion efficiency in natural photosynthetic complexes it is essential to trace the dynamics of electronic and vibrational quantum coherences. Here we apply wavelet analysis to two-dimensional electronic spectroscopy data for three purple bacterial reaction centers with mutations that produce drastically different rates of primary charge separation. From the frequency distribution and dynamic evolution features of the quantum beating, electronic coherence with a dephasing lifetime of ~50 fs, vibronic coherence with a lifetime of ~150 fs and vibrational/vibronic coherences with a lifetime of 450 fs are distinguished. We find that they are responsible for, or couple to, different specific steps during the primary charge separation process, i.e., intradimer charge transfer inside the special bacteriochlorophyll pair followed by its relaxation and stabilization of the charge-transfer state. The results enlighten our understanding of how quantum coherences participate in, and contribute to, a biological electron transfer reaction.
Collapse
Affiliation(s)
- Fei Ma
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
| | - Elisabet Romero
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
- Institute of Chemical Research of Catalonia, Barcelona Institute of Science and Technology, E-43007, Tarragona, Spain
| | - Michael R Jones
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Vladimir I Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninskie Gory, Moscow, Russia, 119992
| | - Long-Jiang Yu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Beijing, 100093, China.
| | - Rienk van Grondelle
- Department of Biophysics, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Zhao Y, Sun K, Chen L, Gelin M. The hierarchy of Davydov's Ansätze and its applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Zhao
- Division of Materials Science Nanyang Technological University Singapore Singapore
| | - Kewei Sun
- Division of Materials Science Nanyang Technological University Singapore Singapore
- School of Science, Hanghzhou Dianzi University Hangzhou China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems Dresden Germany
| | - Maxim Gelin
- School of Science, Hanghzhou Dianzi University Hangzhou China
| |
Collapse
|
10
|
Li W, Ma H, Li S, Ma J. Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning. Chem Sci 2021; 12:14987-15006. [PMID: 34909141 PMCID: PMC8612375 DOI: 10.1039/d1sc02574k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Electronic structure methods based on quantum mechanics (QM) are widely employed in the computational predictions of the molecular properties and optoelectronic properties of molecular materials. The computational costs of these QM methods, ranging from density functional theory (DFT) or time-dependent DFT (TDDFT) to wave-function theory (WFT), usually increase sharply with the system size, causing the curse of dimensionality and hindering the QM calculations for large sized systems such as long polymer oligomers and complex molecular aggregates. In such cases, in recent years low scaling QM methods and machine learning (ML) techniques have been adopted to reduce the computational costs and thus assist computational and data driven molecular material design. In this review, we illustrated low scaling ground-state and excited-state QM approaches and their applications to long oligomers, self-assembled supramolecular complexes, stimuli-responsive materials, mechanically interlocked molecules, and excited state processes in molecular aggregates. Variable electrostatic parameters were also introduced in the modified force fields with the polarization model. On the basis of QM computational or experimental datasets, several ML algorithms, including explainable models, deep learning, and on-line learning methods, have been employed to predict the molecular energies, forces, electronic structure properties, and optical or electrical properties of materials. It can be conceived that low scaling algorithms with periodic boundary conditions are expected to be further applicable to functional materials, perhaps in combination with machine learning to fast predict the lattice energy, crystal structures, and spectroscopic properties of periodic functional materials.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Haibo Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Jiangsu Key Laboratory of Advanced Organic Materials, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University Nanjing 210023 China
| |
Collapse
|
11
|
Gelin MF, Velardo A, Borrelli R. Efficient quantum dynamics simulations of complex molecular systems: A unified treatment of dynamic and static disorder. J Chem Phys 2021; 155:134102. [PMID: 34624969 DOI: 10.1063/5.0065896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We present a unified and highly numerically efficient formalism for the simulation of quantum dynamics of complex molecular systems, which takes into account both temperature effects and static disorder. The methodology is based on the thermo-field dynamics formalism, and Gaussian static disorder is included into simulations via auxiliary bosonic operators. This approach, combined with the tensor-train/matrix-product state representation of the thermalized stochastic wave function, is applied to study the effect of dynamic and static disorders in charge-transfer processes in model organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls) model Hamiltonian.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | | |
Collapse
|
12
|
Gelin MF, Borrelli R. Simulation of Nonlinear Femtosecond Signals at Finite Temperature via a Thermo Field Dynamics-Tensor Train Method: General Theory and Application to Time- and Frequency-Resolved Fluorescence of the Fenna-Matthews-Olson Complex. J Chem Theory Comput 2021; 17:4316-4331. [PMID: 34076412 DOI: 10.1021/acs.jctc.1c00158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addressing needs of contemporary nonlinear femtosecond optical spectroscopy, we have developed a fully quantum, numerically accurate wave function-based approach for the calculation of third-order spectroscopic signals of polyatomic molecules and molecular aggregates at finite temperature. The systems are described by multimode nonadiabatic vibronic-coupling Hamiltonians, in which diagonal terms are treated in harmonic approximation, while off-diagonal interstate couplings are assumed to be coordinate independent. The approach is based on the Thermo Field Dynamics (TFD) representation of quantum mechanics and tensor-train (TT) machinery for efficient numerical simulation of quantum evolution of systems with many degrees of freedom. The developed TFD-TT approach is applied to the calculation of time- and frequency-resolved fluorescence spectra of the Fenna-Matthews-Olson (FMO) antenna complex at room temperature taking into account finite time-frequency resolution in fluorescence detection, orientational averaging, and static disorder.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
13
|
Borrelli R, Gelin MF. Finite temperature quantum dynamics of complex systems: Integrating
thermo‐field
theories and
tensor‐train
methods. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
| | - Maxim F. Gelin
- School of Sciences Hangzhou Dianzi University Hangzhou China
| |
Collapse
|
14
|
Gelin MF, Borrelli R, Chen L. Hierarchical Equations-of-Motion Method for Momentum System-Bath Coupling. J Phys Chem B 2021; 125:4863-4873. [PMID: 33929205 PMCID: PMC8279550 DOI: 10.1021/acs.jpcb.1c02431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For a broad class of quantum models of practical interest, we demonstrate that the Hamiltonian of the system nonlinearly coupled to a harmonic bath through the system and bath coordinates can be equivalently mapped into the Hamiltonian of the system bilinearly coupled to the bath through the system and bath momenta. We show that the Hamiltonian with bilinear system-bath momentum coupling can be treated by the hierarchical equations-of-motion (HEOM) method and present the corresponding proof-of-principle simulations. The developed methodology creates the opportunity to scrutinize a new family of nonlinear quantum systems by the numerically accurate HEOM method.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany
| |
Collapse
|
15
|
Sun K, Xu Q, Chen L, Gelin MF, Zhao Y. Temperature effects on singlet fission dynamics mediated by a conical intersection. J Chem Phys 2020; 153:194106. [DOI: 10.1063/5.0031435] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Quan Xu
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Maxim F. Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
16
|
Xie X, Liu Y, Yao Y, Schollwöck U, Liu C, Ma H. Time-dependent density matrix renormalization group quantum dynamics for realistic chemical systems. J Chem Phys 2019; 151:224101. [DOI: 10.1063/1.5125945] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiaoyu Xie
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuyang Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yao Yao
- Department of Physics and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ulrich Schollwöck
- Department of Physics, Arnold Sommerfeld Center for Theoretical Physics (ASC), Fakultät für Physik, Ludwig-Maximilians-Universität München, München D-80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, München D-80799, Germany
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Sun K, Huang Z, Gelin MF, Chen L, Zhao Y. Monitoring of singlet fission via two-dimensional photon-echo and transient-absorption spectroscopy: Simulations by multiple Davydov trial states. J Chem Phys 2019; 151:114102. [DOI: 10.1063/1.5109251] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Zhongkai Huang
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
18
|
Irgen-Gioro S, Gururangan K, Saer RG, Blankenship RE, Harel E. Electronic coherence lifetimes of the Fenna-Matthews-Olson complex and light harvesting complex II. Chem Sci 2019; 10:10503-10509. [PMID: 32055373 PMCID: PMC7003877 DOI: 10.1039/c9sc03501j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/08/2019] [Indexed: 11/21/2022] Open
Abstract
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects for uncovering mechanisms of efficient energy transport.
The study of coherence between excitonic states in naturally occurring photosynthetic systems offers tantalizing prospects of uncovering mechanisms of efficient energy transport. However, experimental evidence of functionally relevant coherences in wild-type proteins has been tentative, leading to uncertainty in their importance at physiological conditions. Here, we extract the electronic coherence lifetime and frequency using a signal subtraction procedure in two model pigment-protein-complexes (PPCs), light harvesting complex II (LH2) and the Fenna–Matthews–Olson complex (FMO), and find that the coherence lifetimes occur at the same timescale (<100 fs) as energy transport between states at the energy level difference equal to the coherence energy. The pigment monomer bacteriochlorophyll a (BChla) shows no electronic coherences, supporting our methodology of removing long-lived vibrational coherences that have obfuscated previous assignments. This correlation of timescales and energy between coherences and energy transport reestablishes the time and energy scales that quantum processes may play a role in energy transport.
Collapse
Affiliation(s)
- Shawn Irgen-Gioro
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Karthik Gururangan
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA
| | - Rafael G Saer
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Robert E Blankenship
- Department of Biology , Washington University in St. Louis , One Brookings Dr St. Louis , MO 63130 , USA
| | - Elad Harel
- Department of Chemistry , Northwestern University , 2145 Sheridan Rd. , Evanston IL 60208 , USA.,Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , USA .
| |
Collapse
|
19
|
Chen L, Gelin MF, Domcke W. Orientational relaxation of a quantum linear rotor in a dissipative environment: Simulations with the hierarchical equations-of-motion method. J Chem Phys 2019; 151:034101. [PMID: 31325944 DOI: 10.1063/1.5105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the effect of a dissipative environment on the orientational relaxation of a three-dimensional quantum linear rotor. We provide a derivation of the Hamiltonian of a linear rotor coupled to a harmonic bath from first principles, confirming earlier conjectures. The dynamics generated by this Hamiltonian is investigated by the hierarchical equations-of-motion method assuming a Drude spectral density of the bath. We perform numerically accurate simulations and analyze the behavior of orientational correlation functions and the rotational structures of infrared absorption and Raman scattering spectra. We explore the features of orientational correlation functions and their spectra for a wide range of system-bath couplings, bath memory times, and temperatures. We discuss the signatures of the orientational relaxation in the underdamped regime, the strongly damped regime, and the librational regime. We show that the behavior of orientational correlation functions and their spectra can conveniently be analyzed in terms of three characteristic times, which are explicitly expressed in terms of the parameters of the Hamiltonian.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Maxim F Gelin
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|