1
|
Qin ZK, Zhang YK, Tian H, Pan ZC, Wang MQ, Cui L, Wang JY, Bao LX, Wang YH, Zhang WY, Song MX. A series of blue phosphorescent iridium complexes with thermally activated delayed fluorescence and efficiency roll-off properties. RSC Adv 2024; 14:36895-36901. [PMID: 39564530 PMCID: PMC11575189 DOI: 10.1039/d4ra05828c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Six iridium complexes were designed and studied using the DFT approach, (ppy)2Ir(pic) (1), (f4ppy)2Ir(pic) (2), (ppy)2Ir(tmd) (3), (f4ppy)2Ir(tmd) (4), (ppy)2Ir(tpip) (5) and (f4ppy)2Ir(tpip) (6). Here ppy denotes phenylpyridine, f4ppy denotes 2-(2,3,4,5-tetrafluorophenyl) pyridine, pic denotes benzoic acid, tmd denotes 5-hydroxy-2,2,6,6-tetramethylhept-4-en-3-one and tpip denotes tetraphenylimido-diphosphinate. The geometries, absorptions, emissions, frontier molecular orbitals, and spin-orbit coupling (SOC) constants of the 6 complexes were evaluated. An intriguing phenomenon was observed during the excitation process of these molecules. It was discovered that, in the ground state, the Frontier Molecular Orbitals (FMOs) of these molecules were loosely arranged throughout the molecule. However, in the Lowest Unoccupied Molecular Orbitals (LUMO) of the triplet excited state, the FMOs become concentrated around the metal core and a maximum of two ligands. Furthermore, the analysis of the energy difference between the lowest singlet excited state and the lowest triplet excited state (ΔE S1T1 ) of these complexes in conjunction with their spin-orbit coupling performance indicated that complex 1 exhibits characteristics consistent with Thermally Activated Delayed (TAD) fluorescence. We hope that this research can serve as a reference for practical experimental synthesis.
Collapse
Affiliation(s)
- Zheng-Kun Qin
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Yun-Kai Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Hui Tian
- State Grid Jilin Electric Power Supply Company Siping 136000 China
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Zi-Cong Pan
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Mei-Qi Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Lin Cui
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Jin-Yu Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Li-Xin Bao
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Yu-Hao Wang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Wan-Yi Zhang
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| | - Ming-Xing Song
- College of Information Technology, Jilin Engineering Research Center of Optoelectronic Materials and Devices, Jilin Normal University Siping 136000 China
| |
Collapse
|
2
|
Liu Z, Luo L, Jin R. Visible to NIR-II Photoluminescence of Atomically Precise Gold Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309073. [PMID: 37922431 DOI: 10.1002/adma.202309073] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Indexed: 11/05/2023]
Abstract
Atomically precise gold nanoclusters (NCs) have emerged as a new class of precision materials and attracted wide interest in recent years. One of the unique properties of such nanoclusters pertains to their photoluminescence (PL), for it can widely span visible to near-infrared-I and -II wavelengths (NIR-I/II), and even beyond 1700 nm by manipulating the size, structure, and composition. The current research efforts focus on the structure-PL correlation and the development of strategies for raising the PL quantum yields, which is nontrivial when moving from the visible to the near-infrared wavelengths, especially in the NIR-II regions. This review summarizes the recent progress in the field, including i) the types of PL observed in gold NCs such as fluorescence, phosphorescence, and thermally activated delayed fluorescence, as well as dual emission; ii) some effective strategies that are devised to improve the PL quantum yield (QY) of gold NCs, such as heterometal doping, surface rigidification, and core phonon engineering, with double-digit QYs for the NIR PL on the horizons; and iii) the applications of luminescent gold NCs in bioimaging, photosensitization, and optoelectronics. Finally, the remaining challenges and opportunities for future research are highlighted.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania, 15213, USA
| |
Collapse
|
3
|
Shafikov MZ, Zaytsev AV, Kozhevnikov VN. Trinuclear Cyclometalated Iridium(III) Complex Exhibiting Intense Phosphorescence of an Unprecedented Rate. Inorg Chem 2024; 63:1317-1327. [PMID: 38154085 DOI: 10.1021/acs.inorgchem.3c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Herein, we present two novel cyclometalated Ir(III) complexes of dinuclear and trinuclear design, Ir2(dppm)3(acac)2 and Ir3(dppm)4(acac)3, respectively, where dppm is 4,6-di(4-tert-butylphenyl)pyrimidine ligand and acac is acetylacetonate ligand. In both cases, rac-diastereomers were isolated during the synthesis. The materials show intense phosphorescence of outstanding rates (kr = ΦPL/τ) with corresponding radiative decay times of only τr = 1/kr = 0.36 μs for dinuclear Ir2(dppm)3(acac)2 and still shorter τr = 0.30 μs for trinuclear Ir3(dppm)4(acac)3, as measured for doped polystyrene film samples under ambient temperature. Measured under cryogenic conditions, radiative decay times of the three T1 substates (I, III, and III) and substate energy separations are τI = 11.8 μs, τII = 7.1 μs, τIII = 0.06 μs, ΔE(II-I) = 7 cm-1, and ΔE(III-I) = 175 cm-1 for dinuclear Ir2(dppm)3(acac)2 and τI = 3.1 μs, τII = 3.5 μs, τIII = 0.03 μs, ΔE(II-I) ≈ 1 cm-1, and ΔE(III-I) = 180 cm-1 for trinuclear Ir3(dppm)4(acac)3. The determined T1 state ZFS values (ΔE(III-I)) are smaller compared to that of mononuclear analogue Ir(dppm)2(acac) (ZFS = 210-1 cm). Theoretical analysis suggests that the high phosphorescence rates in multinuclear materials can be associated with the increased number of singlet states lending oscillator strength to the T1 → S0 transition.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
4
|
Das B, Gupta S, Mondal A, Kalita KJ, Mallick AI, Gupta P. Tuning the Organelle-Specific Imaging and Photodynamic Therapeutic Efficacy of Theranostic Mono- and Trinuclear Organometallic Iridium(III) Complexes. J Med Chem 2023; 66:15550-15563. [PMID: 37950696 DOI: 10.1021/acs.jmedchem.3c01875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
The organelle-specific localization of mononuclear and trinuclear iridium(III) complexes and their photodynamic behavior within the cells are described herein, emphasizing their structure-activity relationship. Both the IrA2 and IrB2 complexes possess a pair of phenyl-benzothiazole derived from the -CHO moieties of mononuclear organometallic iridium(III) complexes IrA1 and IrB1, which chelates IrCp*Cl (Cp* = 1,2,3,4,5-pentamethylcyclopentadiene) to afford trinuclear complexes IrA3 and IrB3. Insights into the photophysical and electrochemical parameters of the complexes were obtained by a time-dependent density functional theory study. The synthesized complexes IrA2, IrA3, IrB2, and IrB3 were found to be nontoxic to human MCF7 breast carcinoma cells. However, the photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death. Furthermore, to check the organelle-specific localization of IrA2 and IrB2, we observed that both complexes could selectively localize in the endoplasmic reticulum. In contrast, trinuclear IrA3 and IrB3 accumulate in the nuclei. The photoexcitation of complexes using LED light could effectively trigger intracellular reactive oxygen species (ROS) generation, leading to cell death.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhadeep Gupta
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Anushka Mondal
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Kalyan Jyoti Kalita
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Parna Gupta
- Department of Chemical Sciences, IISER Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
5
|
Liu Z, Zhou M, Luo L, Wang Y, Kahng E, Jin R. Elucidating the Near-Infrared Photoluminescence Mechanism of Homometal and Doped M 25(SR) 18 Nanoclusters. J Am Chem Soc 2023; 145:19969-19981. [PMID: 37642696 PMCID: PMC10510323 DOI: 10.1021/jacs.3c06543] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/31/2023]
Abstract
More than a decade of research on the photoluminescence (PL) of classic Au25(SR)18 and its doped nanoclusters (NCs) still leaves many fundamental questions unanswered due to the complex electron dynamics. Here, we revisit the homogold Au25 (ligands omitted hereafter) and doped NCs, as well as the Ag25 and doped ones, for a comparative study to disentangle the influencing factors and elucidate the PL mechanism. We find that the strong electron-vibration coupling in Au25 leads to weak PL in the near-infrared region (∼1000 nm, quantum yield QY = 1% in solution at room temperature). Heteroatom doping of Au25 with a single Cd or Hg atom strengthens the coupling of the exciton with staple vibrations but reduces the coupling with the core breathing and quadrupolar modes. The QYs of the three MAu24 NCs (M = Hg, Au, and Cd) follow a linear relation with their PL lifetimes, suggesting a mechanism of suppressed nonradiative decay in PL enhancement. In contrast, the weaker electron-vibration coupling in Ag25 leads to higher PL (QY = 3.5%), and single Au atom doping further leads to a 5× enhancement of the radiative rate and a suppression of nonradiative decay rate (i.e., twice the PL lifetime of Ag25) in AuAg24 (hence, QY 35%), but doping more Au atoms results in gold distribution to staple motifs and thus triggering of strong electron-vibration coupling as in the MAu24 NCs, hence, counteracting the radiative enhancement effect and giving rise to only 5% QY for AuxAg25-x (x = 3-10). The obtained insights will provide guidance for the design of metal NCs with high PL for lighting, sensing, and optoelectronic applications.
Collapse
Affiliation(s)
- Zhongyu Liu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Meng Zhou
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lianshun Luo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yitong Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Ellen Kahng
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
6
|
Song MX, Ji Y, Zhang HH, Liu XH, Yang JY, Guo XL, Wang J, Qin ZK, Bai FQ. A theoretical study of a series of iridium complexes with methyl or nitro-substituted 2-(4-fluorophenyl)pyridine ligands with the low-efficiency roll-off performance. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Shafikov MZ, Zaytsev AV, Kozhevnikov VN, Czerwieniec R. Aligning π-Extended π-Deficient Ligands to Afford Submicrosecond Phosphorescence Radiative Decay Time of Mononuclear Ir(III) Complexes. Inorg Chem 2023; 62:810-822. [PMID: 36592328 DOI: 10.1021/acs.inorgchem.2c03403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we report a profound investigation of the photophysical properties of three mononuclear Ir(III) complexes fac-Ir(dppm)3 (Hdppm-4,6-bis(4-(tert-butyl)phenyl)pyrimidine), Ir(dppm)2(acac) (acac-acetylacetonate), and Ir(ppy)2(acac) (Hppy-phenylpyridine). The heteroleptic Ir(dppm)2(acac) is found to emit with efficiency above 80% and feature a remarkably high rate of emission. As measured under ambient temperature, Ir(dppm)2(acac) emits with the unusually short (sub-μs) radiative decay time of τr = τem/ΦPL = 1/kr = 0.91 μs in degassed toluene and τr = 0.73 μs in a doped polystyrene film under nitrogen. Investigations at cryogenic temperatures in glassy toluene showed that the emission stems from the T1 state and thus represents T1 → S0 phosphorescence with individual decay times of the T1 substates of T1,I = 66 μs, T1,II = 7.3 μs, T1,III = 0.19 μs, and energy gaps between the substates of ΔE(T1,II-T1,I) = 14 cm-1 and ΔE(T1,III-T1,I) = 210 cm-1. Analysis of the electronic structure of Ir(dppm)2(acac) showed that such a high rate of phosphorescence may stem from the two dppm ligands, with extended π-conjugation system and π-deficient character due to the pyrimidine ring, being serially aligned along one axis. Such alignment, along with the quasi-symmetric character of Jahn-Teller distortions in the T1 state, affords a large chromophore, comprising four (het)aryl rings of the two dppm ligands. This affords an exceptionally large oscillator strength of the MLCT-character singlet state spin-orbit coupled with the T1 state and thus brings about enhancement of the phosphorescence rate. These findings reveal molecular design principles paving the way to new phosphors of enhanced emission rates.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053Regensburg, Germany
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, U.K
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon TyneNE1 8ST, U.K
| | - Rafał Czerwieniec
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, D-93053Regensburg, Germany
| |
Collapse
|
8
|
Fluorescence vs. Phosphorescence: Which Scenario Is Preferable in Au(I) Complexes with Benzothiadiazoles? Molecules 2022; 27:molecules27238162. [PMID: 36500253 PMCID: PMC9741114 DOI: 10.3390/molecules27238162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The photoluminescence of Au(I) complexes is generally characterized by long radiative lifetimes owing to the large spin-orbital coupling constant of the Au(I) ion. Herein, we report three brightly emissive Au(I) coordination compounds, 1, 2a, and 2b, that reveal unexpectedly short emission lifetimes of 10-20 ns. Polymorphs 2a and 2b exclusively exhibit fluorescence, which is quite rare for Au(I) compounds, while compound 1 reveals fluorescence as the major radiative pathway, and a minor contribution of a microsecond-scale component. The fluorescent behaviour for 1-2 is rationalized by means of quantum chemical (TD)-DFT calculations, which reveal the following: (1) S0-S1 and S0-T1 transitions mainly exhibit an intraligand nature. (2) The calculated spin-orbital coupling (SOC) between the states is small, which is a consequence of overall small metal contribution to the frontier orbitals. (3) The T1 state features much lower energy than the S1 state (by ca. 7000 cm-1), which hinders the SOC between the states. Thus, the S1 state decays in the form of fluorescence, rather than couples with T1. In the specific case of complex 1, the potential energy surfaces for the S1 and T2 states intersect, while the vibrationally resolved S1-S0 and T2-S0 calculated radiative transitions show substantial overlap. Thus, the microsecond-scale component for complex 1 can stem from the coupling between the S1 and T2 states.
Collapse
|
9
|
Dalfen I, Pol A, Borisov SM. Optical Oxygen Sensors Show Reversible Cross-Talk and/or Degradation in the Presence of Nitrogen Dioxide. ACS Sens 2022; 7:3057-3066. [PMID: 36109879 PMCID: PMC9623579 DOI: 10.1021/acssensors.2c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A variety of luminescent dyes including the most common indicators for optical oxygen sensors were investigated in regard to their stability and photophysical properties in the presence of nitrogen dioxide. The dyes were immobilized in polystyrene and subjected to NO2 concentrations from 40 to 5500 ppm. The majority of dyes show fast degradation of optical properties due to the reaction with NO2. The class of phosphorescent metalloporphyrins shows the highest resistance against nitrogen dioxide. Among them, palladium(II) and platinum(II) complexes of octasubstituted sulfonylated benzoporphyrins are identified as the most stable dyes with almost no decomposition in the presence of NO2. The phosphorescence of these dyes is reversibly quenched by nitrogen dioxide. Immobilized in various polymeric matrices, the sulfonylated Pt(II) benzoporphyrin demonstrates about one order of magnitude more efficient quenching by NO2 than by molecular oxygen. Our study demonstrates that virtually all commercially available and reported optical oxygen sensors are likely to show either irreversible decomposition in the presence of nitrogen dioxide or reversible luminescence quenching. They should be used with extreme caution if NO2 is present in relatively high concentrations or it may be generated from other species such as nitric oxide. As an important consequence of nearly anoxic systems, production of nitrogen dioxide or nitric oxide may be therefore erroneously interpreted as an increase in oxygen concentration.
Collapse
Affiliation(s)
- Irene Dalfen
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Arjan Pol
- Research
Institute for Biological and Environmental Sciences, Department of
Microbiology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria,
| |
Collapse
|
10
|
Artem'ev AV, Baranov AY, Berezin AS, Lapteva UA, Samsonenko DG, Bagryanskaya IY. Trigonal Planar Au@Ag
3
Clusters Showing Exceptionally Fast and Efficient Phosphorescence in Violet to Deep‐Blue Region. Chemistry 2022; 28:e202201563. [DOI: 10.1002/chem.202201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Andrey Yu. Baranov
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Ulyana A. Lapteva
- Novosibirsk State University 2, Pirogova Str. Novosibirsk 630090 Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
11
|
Lou X, Tian Y, Wang Z. Synthesis, structures, and photophysical properties of two Cu(I) complexes supported by N-heterocyclic carbene and phosphine ligands. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2022. [DOI: 10.1515/znb-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two new cationic four-coordinate Cu(I) complexes supported by different chelating N-heterocyclic carbene ligands and the diphosphine ligand bis[2-(diphenylphosphino)phenyl]ether (POP) have been synthesized. The chemical structures of both complexes have been characterized by 1H NMR, 13C NMR, 31P NMR, and mass spectroscopy, and the crystal structure of one complex has been determined by single-crystal X-ray diffraction. Results of theoretical calculations indicate that the lowest energy electronic transitions of these complexes are mainly the metal-to-ligand charge transfer and ligand-to-ligand charge transfer transitions. The complexes in solid state show intense emissions with high photoluminescence quantum yields. The photophysical behavior at 298 and 77K shows that emissions of these complexes at room temperature are thermally activated delayed fluorescence mixed with phosphorescence.
Collapse
Affiliation(s)
- Xinhua Lou
- School of Food and Drug, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang 471934 , P. R. China
| |
Collapse
|
12
|
Wu Z, Wei J, Jiao T, Chen Q, Oyama M, Chen Q, Chen X. A lead-based room-temperature phosphorescent metal–organic framework sensor for assessing the peroxide value of edible oils. Food Chem 2022; 385:132710. [DOI: 10.1016/j.foodchem.2022.132710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/04/2022] [Accepted: 03/13/2022] [Indexed: 11/04/2022]
|
13
|
Zhu ZL, Gnanasekaran P, Yan J, Zheng Z, Lee CS, Chi Y, Zhou X. Efficient Blue Electrophosphorescence and Hyperphosphorescence Generated by Bis-tridentate Iridium(III) Complexes. Inorg Chem 2022; 61:8898-8908. [PMID: 35635511 DOI: 10.1021/acs.inorgchem.2c01026] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Four blue-emissive iridium(III) complexes bearing a 3,3'-(1,3-phenylene)bis[1-isopropyl-6-(trifluoromethyl)-3H-imidazo[4,5-b]pyridin-2-ylidene]-based pincer chelate, which are derived from PXn·H3(PF6)2, where n = 1-4, and a cyclometalating chelate given from 9-[6-[5-(trifluoromethyl)-2λ2-pyrazol-3-yl]pyridin-2-yl]-9H-carbazole [(PzpyCz)H2], were successfully synthesized and employed as both an emissive dopant and a sensitizer in the fabrication of organic light-emitting diode (OLED) devices. These functional chelates around a IrIII atom occupied two mutually orthogonal coordination arrangements and adopted the so-called bis-tridentate architectures. Theoretical studies confirmed the dominance of the electronic transition by the pincer chelates, while the dianionic PzpyCz chelate was only acting as a spectator group. Phosphorescent OLED devices with [Ir(PX3)(PzpyCz)] (B3) as the dopant gave a maximum external quantum efficiency (EQE) of 21.93% and CIExy of (0.144, 0.157) and was subjected to only ∼10% of roll-off in efficiency at a high current density of 1000 cd m-2. Blue-emissive narrow-band hyperphosphorescence was also obtained using B3 as an assistant sensitizer and ν-DABNA as a terminal emitter, giving both an improved EQE of 26.17% and CIExy of (0.116, 0.144), confirming efficient Förster resonance energy transfer in this hyperdevice.
Collapse
Affiliation(s)
- Ze-Lin Zhu
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond Advanced Films, City University of Hong Kong, Kowloon Tong 999077, Hong Kong SAR, China
| | - Premkumar Gnanasekaran
- Frontier Research Center on Fundamental and Applied Sciences of Matters and Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jie Yan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond Advanced Films, City University of Hong Kong, Kowloon Tong 999077, Hong Kong SAR, China
| | - Zhong Zheng
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond Advanced Films, City University of Hong Kong, Kowloon Tong 999077, Hong Kong SAR, China
| | - Chun-Sing Lee
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond Advanced Films, City University of Hong Kong, Kowloon Tong 999077, Hong Kong SAR, China
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond Advanced Films, City University of Hong Kong, Kowloon Tong 999077, Hong Kong SAR, China.,Frontier Research Center on Fundamental and Applied Sciences of Matters and Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Bezzubov S, Ermolov K, Gorbunov A, Kalle P, Lentin I, Latyshev G, Kovalev V, Vatsouro I. Inherently dinuclear iridium(III) meso architectures accessed by cyclometalation of calix[4]arene-based bis(aryltriazoles). Dalton Trans 2021; 50:16765-16769. [PMID: 34761791 DOI: 10.1039/d1dt03579g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Conventional cyclometalation of calix[4]arene bis(aryltriazoles) with iridium(III) chloride hydrate leads to unique meso architectures in which the Ir2Cl2 core is cross-bound by two (C^N)2 ligands, which allows further replacement of the chloride bridges with ancillary ligands while maintaining the dinuclear structures of the complexes having independent or coupled iridium pairs.
Collapse
Affiliation(s)
- Stanislav Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Kirill Ermolov
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Alexander Gorbunov
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Paulina Kalle
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991 Moscow, Russia.
| | - Ivan Lentin
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Gennadij Latyshev
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Vladimir Kovalev
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| | - Ivan Vatsouro
- Department of Chemistry M. V. Lomonosov Moscow State University, Lenin's Hills 1, 119991 Moscow, Russia.
| |
Collapse
|
15
|
Graf M, Czerwieniec R, Mayer P, Böttcher HC. Synthesis and structural characterization of bis-cyclometalated compounds [Ir(dFppy)2(Me4phen)]PF6 and [Ir(dF(CF3)ppy)2(Me4phen)]PF6. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Cai X, Ma T, Ding D, Wang Z, Li M, Chen S, Ma Z, Teng S, Du Y, Zhang T, Xu C. Investigation on the photophysical properties of Cu(I) complexes supported by
N
‐heterocyclic carbene ligands with electron‐donating/withdrawing groups on imidazolylidene unit. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100 China
| | - Teng Ma
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100 China
| | - Danli Ding
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100 China
| | - Zhiqiang Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Mingzhu Li
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Shanshan Chen
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Zhongren Ma
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Sen Teng
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Yibo Du
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Tianci Zhang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials Luoyang Normal University Luoyang, Henan 471022 China
| | - Chen Xu
- School of Environmental and Chemical Engineering Jiangsu University of Science and Technology Zhenjiang, Jiangsu 212100 China
| |
Collapse
|
17
|
Mauro M. Phosphorescent multinuclear complexes for optoelectronics: tuning of the excited-state dynamics. Chem Commun (Camb) 2021; 57:5857-5870. [PMID: 34075949 DOI: 10.1039/d1cc01077h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Luminescent transition metal complexes have attracted a great deal of attention in the last two decades from both fundamental and application points of view. The majority of the investigated and most efficient systems consist of monometallic compounds with judiciously selected ligand sphere, providing excellent triplet emitters for both lab-scale and real-market light-emitting devices for display technologies. More recently, chemical architectures comprising multimetallic compounds have appeared as an emerging and valuable alternative. Herein, the most recent trends in the field are showcased in a systematic approach, where the different examples are classified by metal center and ligand(s) scaffold. Their optical and electroluminescence properties are presented and compared as well. Indeed, the multimetallic strategy has proven to be highly suitable for compounds emitting efficiently in the challenging red to near-infrared region, yielding metal-based emitters with improved optical properties in terms of enhanced emission efficiency, shortened excited-state lifetime, and faster radiative rate constant. Finally, the advantages and drawbacks of the multimetallic approach will be discussed.
Collapse
Affiliation(s)
- Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR7504 Université de Strasbourg & CNRS 23 rue du Loess, 67083 Strasbourg, France.
| |
Collapse
|
18
|
Tai WS, Gnanasekaran P, Chen YY, Hung WY, Zhou X, Chou TC, Lee GH, Chou PT, You C, Chi Y. Rational Tuning of Bis-Tridentate Ir(III) Phosphors to Deep-Blue with High Efficiency and Sub-microsecond Lifetime. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15437-15447. [PMID: 33759493 DOI: 10.1021/acsami.1c00238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new class of bis-tridentate Ir(III) complexes (Dap-1-4) was synthesized using carbene pincer pro-chelates PC1·H3(PF6)2 or PC2·H3(PF6)2 with either imidazolylidene or imidazo[4,5-b]pyridin-2-ylidene appendages, together with a second cyclometalating 2,6-diaryoxypyridine chelate, L1H2 and L2H2, differed by a NMe2 donor at the central pyridinyl fragment. The respective emission tuning between the ultraviolet and blue region was rationalized using time-dependent density functional theory (TD-DFT) approaches. Next, a highly efficient blue emitter (Dap-5) was synthesized by concomitant addition of two methyl groups and a single CF3 substituent at the central phenyl and peripheral imidazo[4,5-b]pyridin-2-ylidene entities of the carbene pincer chelate, respectively. The organic light-emitting diode (OLED) device with 15 wt % Dap-5 in DPEPO shows electroluminescence at 468 nm and with CIE (0.14, 0.15) and a max external quantum efficiency (max EQE) of 16.8% with low efficiency roll-off (EQE of 14.4% at 1000 cd m-2); the latter is attributed to the relatively shortened triplet excited-state radiative lifetime. These results highlight the adequateness of bis-tridentate Ir(III) phosphors in fabrication of practical blue-emitting OLEDs.
Collapse
Affiliation(s)
- Wun-Shan Tai
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Premkumar Gnanasekaran
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Yang Chen
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Xiuwen Zhou
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Tai-Che Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Gene-Hsiang Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Caifa You
- Department of Chemistry, Department of Materials Sciences and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| | - Yun Chi
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Chemistry, Department of Materials Sciences and Engineering, and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon 999077, Hong Kong SAR, China
| |
Collapse
|
19
|
Cytotoxic Activities of Bis‐cyclometalated Rhodium(III) and Iridium(III) Complexes Containing 2,2’‐Biphenyldiamine. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
20
|
Shafikov MZ, Martinscroft R, Hodgson C, Hayer A, Auch A, Kozhevnikov VN. Non-Stereogenic Dinuclear Ir(III) Complex with a Molecular Rack Design to Afford Efficient Thermally Enhanced Red Emission. Inorg Chem 2021; 60:1780-1789. [DOI: 10.1021/acs.inorgchem.0c03251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marsel Z. Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg 93053, Germany
- Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
| | - Ross Martinscroft
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Craig Hodgson
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Anna Hayer
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Armin Auch
- Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Valery N. Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
21
|
Shafikov MZ, Zaytsev AV, Kozhevnikov VN. Halide-Enhanced Spin-Orbit Coupling and the Phosphorescence Rate in Ir(III) Complexes. Inorg Chem 2021; 60:642-650. [PMID: 33405901 DOI: 10.1021/acs.inorgchem.0c02469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The spin-forbidden nature of phosphorescence in Ir(III) complexes is relaxed by the metal-induced effect of spin-orbit coupling (SOC). A further increase of the phosphorescence rate could potentially be achieved by introducing additional centers capable of further enhancing the SOC effect, such as metal-coordinated halides. Herein, we present a dinuclear Ir(III) complex Ir2I2 that contains two Ir(III)-iodide moieties. The complex shows intense phosphorescence with a quantum yield of ΦPL(300 K) = 90% and a submicrosecond decay time of only τ(300 K) = 0.34 μs, as measured under ambient temperature for the degassed toluene solution. These values correspond to a top value T1 → S0 phosphorescence rate of kr = 2.65 × 106 s-1. Investigations at cryogenic temperatures allowed us to determine the zero-field splitting (ZFS) of the emitting state T1 ZFS(III-I) = 170 cm-1 and unusually short individual decay times of T1 substates: τ(I) = 6.4 μs, τ(II) = 7.6 μs, and τ(III) = 0.05 μs. This indicates a strong SOC of state T1 with singlet states. Theoretical investigations suggest that the SOC of state T1 with singlets is also contributed by halides. Strongly contributing to the higher occupied molecular orbitals of the complex (e.g., HOMO, HOMO - 1, and so forth), iodides work as important SOC centers that operate in tandem with metals. The examples of Ir2I2 and of earlier reported analogous complex Ir2Cl2 reveal that the metal-coordinated halides can enhance the SOC of state T1 with singlets and, consequently, the phosphorescence rate. A comparative study of Ir2I2 and Ir2Cl2 shows that the share of halides in total contribution (halides plus metals) to the SOC of state T1 with singlets increases strongly upon exchange of chlorides for iodides. The exchange also led to the decrease in values of ZFS of the T1 state from ZFS(III-I) = 205 cm-1 for Ir2Cl2 to T1 ZFS(III-I) = 170 cm-1 for Ir2I2. This results in a more efficient thermal population of the fastest emitting T1 substate III, thus further enhancing the room-temperature phosphorescence rate.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany.,Department for Technology of Organic Synthesis, Institute of Chemical Technology, Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| |
Collapse
|
22
|
Bonfiglio A, Pallova L, César V, Gourlaouen C, Bellemin‐Laponnaz S, Daniel C, Polo F, Mauro M. Phosphorescent Cationic Heterodinuclear Ir
III
/M
I
Complexes (M=Cu
I
, Au
I
) with a Hybrid Janus‐Type N‐Heterocyclic Carbene Bridge. Chemistry 2020; 26:11751-11766. [DOI: 10.1002/chem.202002767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/04/2020] [Indexed: 01/13/2023]
Affiliation(s)
- Anna Bonfiglio
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Lenka Pallova
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Vincent César
- LCC-CNRS UPR8241 Université de Toulouse, CNRS 31077 Toulouse cedex 4 France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Stéphane Bellemin‐Laponnaz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg-CNRS 4 Rue Blaise Pascal 67000 Strasbourg France
| | - Federico Polo
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia Italy
| | - Matteo Mauro
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR7504 Université de Strasbourg, CNRS 23 rue du Loess 67000 Strasbourg France
| |
Collapse
|
23
|
Shafikov MZ, Zaytsev AV, Suleymanova AF, Brandl F, Kowalczyk A, Gapińska M, Kowalski K, Kozhevnikov VN, Czerwieniec R. Near Infrared Phosphorescent Dinuclear Ir(III) Complex Exhibiting Unusually Slow Intersystem Crossing and Dual Emissive Behavior. J Phys Chem Lett 2020; 11:5849-5855. [PMID: 32615767 DOI: 10.1021/acs.jpclett.0c01276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A dinuclear iridium(III) complex IrIr shows dual emission consisting of near infrared (NIR) phosphorescence (λmax = 714 nm, CH2Cl2, T = 300 K) and green fluorescence (λmax = 537 nm). The NIR emission stems from a triplet state (T1) localized on the ditopic bridging ligand (3LC). Because of the dinuclear molecular structure, the phosphorescence efficiency (ΦPL = 3.5%) is high compared to those of other known red/NIR-emitting iridium complexes. The weak fluorescence stems from the lowest excited singlet state (S1) of 1LC character. The occurrence of fluorescence is ascribed to relatively slow intersystem crossing (ISC) from state S1 (1LC) to the triplet manifold. The measured ISC rate corresponds to a time constant τISC of 2.1 ps, which is an order of magnitude longer than those usually found for iridium complexes. This slow ISC rate can be explained in terms of the LC character and large energy separation (0.57 eV) of the respective singlet and triplet excited states. IrIr is internalized by live HeLa cells as evidenced by confocal luminescence microscopy.
Collapse
Affiliation(s)
- Marsel Z Shafikov
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany
- Department for Technology of Organic Synthesis, Institute of Chemical Technology, Ural Federal University, Mira 19, Ekaterinburg 620002, Russia
| | - Andrey V Zaytsev
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | | | - Fabian Brandl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany
| | - Aleksandra Kowalczyk
- Department of Microbial Genetics, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| | - Valery N Kozhevnikov
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Rafał Czerwieniec
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstrasse 31, Regensburg D-93053, Germany
| |
Collapse
|
24
|
Theoretical study on the electronic structure and photophysical properties of a series of iridium(III) complexes bearing non-planar tetradentate chelate and substituted bipyrazolate chelate ligands. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Puttock EV, Sil A, Yufit DS, Williams JAG. Mono and dinuclear iridium(iii) complexes featuring bis-tridentate coordination and Schiff-base bridging ligands: the beneficial effect of a second metal ion on luminescence. Dalton Trans 2020; 49:10463-10476. [DOI: 10.1039/d0dt01964j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ditopic bis-N^N^O-coordinating ligands, prepared by Schiff base chemistry, lead to dinuclear iridium complexes that emit much more brightly than their mononuclear counterparts.
Collapse
Affiliation(s)
| | - Amit Sil
- Department of Chemistry
- Durham University
- Durham
- UK
| | | | | |
Collapse
|