1
|
Ling Y, Yu L, Guo Z, Bian F, Wang Y, Wang X, Hou Y, Hou X. Single-Pore Nanofluidic Logic Memristor with Reconfigurable Synaptic Functions and Designable Combinations. J Am Chem Soc 2024; 146:14558-14565. [PMID: 38755097 DOI: 10.1021/jacs.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
The biological neural network is a highly efficient in-memory computing system that integrates memory and logical computing functions within synapses. Moreover, reconfiguration by environmental chemical signals endows biological neural networks with dynamic multifunctions and enhanced efficiency. Nanofluidic memristors have emerged as promising candidates for mimicking synaptic functions, owing to their similarity to synapses in the underlying mechanisms of ion signaling in ion channels. However, realizing chemical signal-modulated logic functions in nanofluidic memristors, which is the basis for brain-like computing applications, remains unachieved. Here, we report a single-pore nanofluidic logic memristor with reconfigurable logic functions. Based on the different degrees of protonation and deprotonation of functional groups on the inner surface of the single pore, the modulation of the memristors and the reconfiguration of logic functions are realized. More noteworthy, this single-pore nanofluidic memristor can not only avoid the average effects in multipore but also act as a fundamental component in constructing complex neural networks through series and parallel circuits, which lays the groundwork for future artificial nanofluidic neural networks. The implementation of dynamic synaptic functions, modulation of logic gates by chemical signals, and diverse combinations in single-pore nanofluidic memristors opens up new possibilities for their applications in brain-inspired computing.
Collapse
Affiliation(s)
- Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lejian Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziwen Guo
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Fazhou Bian
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xin Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yaqi Hou
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- Engineering Research Center of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Li S, Zhang X, Su J. Enhanced Rectification Performance in Bipolar Janus Graphene Oxide Channels by Lateral Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5488-5498. [PMID: 38423602 DOI: 10.1021/acs.langmuir.4c00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Improving the ionic rectification in nanochannels enables versatile applications such as biosensors, energy harvesting, and fluidic diodes. While previous work mostly focused on the effect of channel geometry and surface charge, in this work via a series of molecular dynamics simulations, we find a striking phenomenon that the ionic current rectification (ICR) ratio in Janus graphene oxide (GO) channels can be tremendously promoted by lateral electric fields. First, under a given axial electric field, an additional lateral electric field can improve the ICR ratio by several times to an order, depending on the channel symmetry. The symmetric channel has an obviously greater ICR ratio because it maintains a more pronounced ion transport disparity at opposite axial fields. The underlying mechanism for the function of the lateral electric field is that it promotes the lateral migration of ions and thus amplifies the ion-residue electrostatic interaction at opposite axial fields, enlarging the ion dynamical difference. Furthermore, for different axial electric fields, the ICR ratio can always be improved by lateral electric fields (up to two orders), suggesting that the ICR improvement is universal. Our results demonstrate that applying a lateral electric field could be a new method to improve the rectification performance of nanochannels, providing valuable guidance for the design of efficient ionic diode devices.
Collapse
Affiliation(s)
- Shuang Li
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xinke Zhang
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiaye Su
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing and Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Kushnir SE, Devyanina NP, Roslyakov IV, Lyskov NV, Stolyarov VS, Napolskii KS. Stained Glass Effect in Anodic Aluminum Oxide Formed in Selenic Acid. J Phys Chem Lett 2024; 15:298-306. [PMID: 38166418 DOI: 10.1021/acs.jpclett.3c03287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A combination of the unique porous structure and physical and chemical properties of anodic aluminum oxide (AAO) makes it widely used in cutting-edge areas of materials science and nanotechnology. Selenic acid electrolyte provides the ability to obtain AAO with low porosity and high optical transparency and thus is promising for the preparation of AAO photonic crystals (PhCs). Here, we show the influence of crystallographic orientation of Al on the electrochemical oxidation rate in 1 M H2SeO4 as well as on the growth rate, porosity, and the effective refractive index of AAO. The cyclic anodization regime is used to prepare AAO PhCs with photonic band gaps, their wavelength positions are used to measure the AAO growth rate. At an anodization voltage of 40-45 V, the growth rate varies by up to 22.6% with crystallographic orientation of Al grains, causing the stained glass effect, which can be seen with the naked eye.
Collapse
Affiliation(s)
| | | | | | - Nikolay V Lyskov
- Federal Research Center of Problems of Chemical Physics and Medical Chemistry RAS, Chernogolovka, Moscow region 142432, Russia
| | - Vasily S Stolyarov
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- LPEM, ESPCI Paris, PSL Research University, CNRS, 75005 Paris, France
| | | |
Collapse
|
4
|
He P, Shao Y, Yu Z, Liang X, Liu J, Bian Y, Zhu Z, Li M, Pereira CM, Shao Y. Electrostatic-Gated Kinetics of Rapid Ion Transfers at a Nano-liquid/Liquid Interface. Anal Chem 2022; 94:9801-9810. [PMID: 35766488 DOI: 10.1021/acs.analchem.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charge (ion and electron)-transfer reactions at a liquid/liquid interface are critical processes in many important biological and chemical systems. An ion-transfer (IT) process is usually very fast, making it difficult to accurately measure its kinetic parameters. Nano-liquid/liquid interfaces supported at nanopipettes are advantageous approaches to study the kinetics of such ultrafast IT processes due to their high mass transport rate. However, correct measurements of IT kinetic parameters at nanointerfaces supported at nanopipettes are inhibited by a lack of knowledge of the nanometer-sized interface geometry, influence of the electric double layer, wall charge polarity, etc. Herein, we propose a new electrochemical characterization equation for nanopipettes and make a suggestion on the shape of a nano-water/1,2-dichloroethane (nano-W/DCE) interface based on the characterization and calculation results. A theoretical model based on the Poisson-Nernst-Planck equation was applied to systematically study how the electric double layer influences the IT process of cations (TMA+, TEA+, TPrA+, ACh+) and anions (ClO4-, SCN-, PF6-, BF4-) at the nano-W/DCE interface. The relationships between the wall charge conditions and distribution of concentration and potential inside the nanopipette revealed that the measured standard rate constant (k0) was enhanced when the polarity of the ionic species was opposite to the pipette wall charge and reduced when the same. This work lays the right foundation to obtain the kinetics at the nano-liquid/liquid interfaces.
Collapse
Affiliation(s)
- Peng He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xu Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junjie Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yixuan Bian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhiwei Zhu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Carlos M Pereira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Porto 4099-002, Portugal
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Li ZQ, Zhu GL, Mo RJ, Wu MY, Ding XL, Huang LQ, Wu ZQ, Xia XH. Light-Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal-Organic Framework Membranes. Angew Chem Int Ed Engl 2022; 61:e202202698. [PMID: 35293120 DOI: 10.1002/anie.202202698] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/11/2022]
Abstract
High ion selectivity and permeability, as two contradictory aspects for the membrane design, highly hamper the development of osmotic energy harvesting technologies. Metal-organic frameworks (MOFs) with ultra-small and high-density pores and functional surface groups show great promise in tackling these problems. Here, we propose a facile and mild cathodic deposition method to directly prepare crack-free porphyrin MOF membranes on a porous anodic aluminum oxide for osmotic energy harvesting. The abundant carboxyl groups of the functionalized porphyrin ligands together with the nanoporous structure endows the MOF membrane with high cation selectivity and ion permeability, thus a large output power density of 6.26 W m-2 is achieved. The photoactive porphyrin ligands further lead to an improvement of the power density to 7.74 W m-2 upon light irradiation. This work provides a promising strategy for the design of high-performance osmotic energy harvesting systems.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guan-Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ri-Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Li-Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
6
|
Hu YL, Hua Y, Pan ZQ, Qian JH, Yu XY, Bao N, Huo XL, Wu ZQ, Xia XH. PNP Nanofluidic Transistor with Actively Tunable Current Response and Ionic Signal Amplification. NANO LETTERS 2022; 22:3678-3684. [PMID: 35442043 DOI: 10.1021/acs.nanolett.2c00312] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Inspired by electronic transistors, electric field gating has been adopted to manipulate ionic currents of smart nanofluidic devices. Here, we report a PNP nanofluidic bipolar junction transistor (nBJT) consisting of one polyaniline (PANI) layer sandwiched between two polyethylene terephthalate (PET) nanoporous membranes. The PNP nBJT exhibits three different responses of currents (quasi-linear, rectification, and sigmoid) due to the counterbalance between surface charge distribution and base voltage applied in the nanofluidic channels; thus, they can be switched by base voltage. Four operating modes (cutoff, active, saturation, and breakdown mode) occur in the collector response currents. Under optimal conditions, the PNP nBJT exhibits an average current gain of up to 95 in 100 mM KCl solution at a low base voltage of 0.2 V. The present nBJT is promising for fabrication of nanofluidic devices with logical-control functions for analysis of single molecules.
Collapse
Affiliation(s)
- Yu-Lin Hu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Yu Hua
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhong-Qin Pan
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Jia-Han Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Yang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China
| | - Ning Bao
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xiao-Lei Huo
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Zeng-Qiang Wu
- School of Public Health, Nantong University, Nantong, Jiangsu 226019, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
7
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Li Z, Zhu G, Mo R, Wu M, Ding X, Huang L, Wu Z, Xia X. Light‐Enhanced Osmotic Energy Harvester Using Photoactive Porphyrin Metal–Organic Framework Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhong‐Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Guan‐Long Zhu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ri‐Jian Mo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Ming‐Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xin‐Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Li‐Qiu Huang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Zeng‐Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
9
|
Shao Y, He P, Yu Z, Liang X, Shao Y. Modulation of ionic current behaviors based on a dual-channel micro/nano-pipette with ternary-form-charged model. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Layer-selective functionalisation in mesoporous double layer via iniferter initiated polymerisation for nanoscale step gradient formation. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Ding X, Wu Z, Li Z, Xia X. Electric Field Driven Surface Ion Transport in Hydrophobic Nanopores
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Xin‐Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Zeng‐Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Zhong‐Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
12
|
Yang R, Liu S, Zhou L, Lin X, Su B. Thermoelectric Response of Ion‐Selective Membranes: Modelling and Experimental Studies. ChemElectroChem 2021. [DOI: 10.1002/celc.202100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rongjie Yang
- Department of Chemistry Institute of Analytical Chemistry Zhejiang University Hangzhou 310058 China
| | - Shanshan Liu
- Department of Chemistry Institute of Analytical Chemistry Zhejiang University Hangzhou 310058 China
| | - Lin Zhou
- Department of Chemistry Institute of Analytical Chemistry Zhejiang University Hangzhou 310058 China
| | - Xingyu Lin
- Department of Biosystem and Food Chemistry Zhejiang University Hangzhou 310058 China
| | - Bin Su
- Department of Chemistry Institute of Analytical Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
13
|
Li ZQ, Wu MY, Ding XL, Wu ZQ, Xia XH. Reversible Electrochemical Tuning of Ion Sieving in Coordination Polymers. Anal Chem 2020; 92:9172-9178. [DOI: 10.1021/acs.analchem.0c01504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ming-Yang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zeng-Qiang Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|