1
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
2
|
Schuurman MS, Blanchet V. Time-resolved photoelectron spectroscopy: the continuing evolution of a mature technique. Phys Chem Chem Phys 2022; 24:20012-20024. [PMID: 35297909 DOI: 10.1039/d1cp05885a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Time-resolved photoelectron spectroscopy (TRPES) has become one of the most widespread techniques for probing nonadiabatic dynamics in the excited electronic states of molecules. Furthermore, the complementary development of ab initio approaches for the simulation of TRPES signals has enabled the interpretation of these transient spectra in terms of underlying coupled electronic-nuclear dynamics. In this perspective, we discuss the current state-of-the-art approaches, including efforts to push femtosecond pulses into vacuum ultraviolet and soft X-ray regimes as well as the utilization of novel polarizations to use time-resolved optical activity as a probe of nonadiabatic dynamics. We close this perspective with a forward-looking prospectus on the new areas of application for this technique.
Collapse
Affiliation(s)
- Michael S Schuurman
- National Research Council of Canada, 100 Sussex Dr, Ottawa, ON, K1N 6B9, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Dr, Ottawa, ON, Canada.
| | | |
Collapse
|
3
|
Khalili F, Vafaee M, Shokri B. Attosecond charge migration following oxygen K-shell ionization in DNA bases and base pairs. Phys Chem Chem Phys 2021; 23:23005-23013. [PMID: 34611693 DOI: 10.1039/d1cp02920g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core ionization of DNA begins a cascade of events which could lead to cellular inactivation or death. The created core-hole following an impulse inner-shell ionization of molecules naturally decays in the auger timescale. We simulated charge migration (CM) phenomena following an impulsive core ionization of individual DNA bases at the oxygen K-edge which occurs before Auger decay of the oxygen. Our approach is based on real-time time dependent density functional theory (RT-TDDFT). It is shown that the pronounced hole fluctuation observed around bonds of the initial core-hole results in various valence orbital migrations. Also, the same photo-core-ionized dynamics is studied for the related base pairs. We investigate the role of base pairing and H-bonding interactions in the attosecond CM dynamics. In particular, the creation of a core-hole in the oxygen involved in H-bonding leads to an enhancement of charge migration relative to the respective single bases. Importantly, the hole oscillation of the adenine-thymine base pair upon creation of a core-hole at the oxygen, which does not contribute to the donor-acceptor interactions (not H-bonded), decreases compared to the single thymine base. Understanding the detailed dynamics of the localized core-hole initiating CM process would open the way for chemically controlling DNA damage/repair in the future.
Collapse
Affiliation(s)
- Fatemeh Khalili
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran.
| | - Mohsen Vafaee
- Department of Chemistry, Tarbiat Modares University, P. O. Box 14115-175, Tehran, Iran.
| | - Babak Shokri
- Department of Physics, Shahid Beheshti University, Velenjak, Tehran 19839, Iran. .,Laser-Plasma Research Institute, Shahid Beheshti University, Velenjak, Tehran 19839, Iran
| |
Collapse
|
4
|
Karlsson D, van Leeuwen R, Pavlyukh Y, Perfetto E, Stefanucci G. Fast Green's Function Method for Ultrafast Electron-Boson Dynamics. PHYSICAL REVIEW LETTERS 2021; 127:036402. [PMID: 34328754 DOI: 10.1103/physrevlett.127.036402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/29/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena experimentally accessible using time-resolved techniques. Green's function methods offer an invaluable interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in the theory. Currently, however, real-time Green's function simulations are either prohibitively expensive due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons, thus violating energy conservation. We put forward a computationally efficient Green's function scheme which overcomes both limitations. The numerical effort scales linearly with the propagation time while the simultaneous dressing of electrons and bosons guarantees the fulfillment of all fundamental conservation laws. We present a real-time study of the phonon-driven relaxation dynamics in an optically excited narrow band-gap insulator, highlighting the nonthermal behavior of the phononic degrees of freedom. Our formulation paves the way to first-principles simulations of electron-boson systems with unprecedented long propagation times.
Collapse
Affiliation(s)
- Daniel Karlsson
- Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Robert van Leeuwen
- Department of Physics, Nanoscience Center, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Yaroslav Pavlyukh
- Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle, Germany
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Enrico Perfetto
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gianluca Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Delgado J, Lara-Astiaso M, González-Vázquez J, Decleva P, Palacios A, Martín F. Molecular fragmentation as a way to reveal early electron dynamics induced by attosecond pulses. Faraday Discuss 2021; 228:349-377. [PMID: 33571330 DOI: 10.1039/d0fd00121j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We present a theoretical study of the electron and nuclear dynamics that would arise in an attosecond two-color XUV-pump/XUV-probe experiment in glycine. In this scheme, the broadband pump pulse suddenly ionizes the molecule and creates an electronic wave packet that subsequently evolves under the influence of the nuclear motion until it is finally probed by the second XUV pulse. To describe the different steps of such an experiment, we have combined a multi-reference static-exchange scattering method with a trajectory surface hopping approach. We show that by changing the central frequency of the pump pulse, i.e., by engineering the initial electronic wave packet with the pump pulse, one can drive the cation dynamics into a specific fragmentation pathway. Reminiscence of this early electron dynamics can be observed in specific fragmentation channels (not all of them) as a function of the pump-probe delay and in time-resolved photoelectron spectra at specific photoelectron energies. The optimum conditions to visualize the initial electronic coherence in photoelectron and photo-ion spectra depend very much on the characteristics of the pump pulse as well as on the electronic structure of the molecule under study.
Collapse
Affiliation(s)
- Jorge Delgado
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
| | - Manuel Lara-Astiaso
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Jesús González-Vázquez
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Piero Decleva
- CNR IOM, Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá di Trieste, 34127 Trieste, Italy
| | - Alicia Palacios
- Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain and Departamento de Química, Modulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
6
|
Li S, Driver T, Alexander O, Cooper B, Garratt D, Marinelli A, Cryan JP, Marangos JP. Time-resolved pump-probe spectroscopy with spectral domain ghost imaging. Faraday Discuss 2021; 228:488-501. [PMID: 33625412 DOI: 10.1039/d0fd00122h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An atomic-level picture of molecular and bulk processes, such as chemical bonding and charge transfer, necessitates an understanding of the dynamical evolution of these systems. On the ultrafast timescales associated with nuclear and electronic motion, the temporal behaviour of a system is often interrogated in a 'pump-probe' scheme. Here, an initial 'pump' pulse triggers dynamics through photoexcitation, and after a carefully controlled delay a 'probe' pulse initiates projection of the instantaneous state of the evolving system onto an informative measurable quantity, such as electron binding energy. In this paper, we apply spectral ghost imaging to a pump-probe time-resolved experiment at an X-ray free-electron laser (XFEL) facility, where the observable is spectral absorption in the X-ray regime. By exploiting the correlation present in the shot-to-shot fluctuations in the incoming X-ray pulses and measured electron kinetic energies, we show that spectral ghost imaging can be applied to time-resolved pump-probe measurements. In the experiment presented, interpretation of the measurement is simplified because spectral ghost imaging separates the overlapping contributions to the photoelectron spectrum from the pump and probe pulse.
Collapse
Affiliation(s)
- Siqi Li
- Accelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, USA and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Oliver Alexander
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, SW7 2BW, UK
| | - Bridgette Cooper
- Atomic, Molecular, Optical and Positron Physics Group, Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Douglas Garratt
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, SW7 2BW, UK
| | - Agostino Marinelli
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, USA and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, USA and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Jonathan P Marangos
- Quantum Optics and Laser Science Group, Blackett Laboratory, Imperial College London, London, SW7 2BW, UK
| |
Collapse
|
7
|
Moreno Carrascosa A, Yang M, Yong H, Ma L, Kirrander A, Weber PM, Lopata K. Mapping static core-holes and ring-currents with X-ray scattering. Faraday Discuss 2021; 228:60-81. [PMID: 33605956 DOI: 10.1039/d0fd00124d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measuring the attosecond movement of electrons in molecules is challenging due to the high temporal and spatial resolutions required. X-ray scattering-based methods are promising, but many questions remain concerning the sensitivity of the scattering signals to changes in density, as well as the means of reconstructing the dynamics from these signals. In this paper, we present simulations of stationary core-holes and electron dynamics following inner-shell ionization of the oxazole molecule. Using a combination of time-dependent density functional theory simulations along with X-ray scattering theory, we demonstrate that the sudden core-hole ionization produces a significant change in the X-ray scattering response and how the electron currents across the molecule should manifest as measurable modulations to the time dependent X-ray scattering signal. This suggests that X-ray scattering is a viable probe for measuring electronic processes at time scales faster than nuclear motion.
Collapse
Affiliation(s)
| | - Mengqi Yang
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA
| | - Haiwang Yong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Lingyu Ma
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK
| | - Peter M Weber
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Kenneth Lopata
- Department of Chemistry, 232 Choppin Hall, Baton Rouge, Louisiana 70803, USA and Center for Computation and Technology, Louisiana State University, Baton Roug, Louisiana 70803, USA.
| |
Collapse
|
8
|
Kleine C, Ekimova M, Winghart MO, Eckert S, Reichel O, Löchel H, Probst J, Braig C, Seifert C, Erko A, Sokolov A, Vrakking MJJ, Nibbering ETJ, Rouzée A. Highly efficient soft x-ray spectrometer for transient absorption spectroscopy with broadband table-top high harmonic sources. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:034302. [PMID: 34235230 PMCID: PMC8249000 DOI: 10.1063/4.0000096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
We present a novel soft x-ray spectrometer for ultrafast absorption spectroscopy utilizing table-top femtosecond high-order harmonic sources. Where most commercially available spectrometers rely on spherical variable line space gratings with a typical efficiency on the order of 3% in the first diffractive order, this spectrometer, based on a Hettrick-Underwood design, includes a reflective zone plate as a dispersive element. An improved efficiency of 12% at the N K-edge is achieved, accompanied by a resolving power of 890. The high performance of the soft x-ray spectrometer is further demonstrated by comparing nitrogen K-edge absorption spectra from calcium nitrate in aqueous solution obtained with our high-order harmonic source to previous measurements performed at the electron storage ring facility BESSY II.
Collapse
Affiliation(s)
- Carlo Kleine
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Maria Ekimova
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Marc-Oliver Winghart
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Sebastian Eckert
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Oliver Reichel
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Heike Löchel
- Nano Optics Berlin GmbH, Krumme Strasse 64, 10627 Berlin, Germany
| | - Jürgen Probst
- Nano Optics Berlin GmbH, Krumme Strasse 64, 10627 Berlin, Germany
| | - Christoph Braig
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Christian Seifert
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Alexei Erko
- Institute of Applied Photonics (IAP) e.V., Rudower Chaussee 29/31, 12489 Berlin, Germany
| | - Andrey Sokolov
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Strasse 15, 12489 Berlin, Germany
| | - Marc J. J. Vrakking
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Erik T. J. Nibbering
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| | - Arnaud Rouzée
- Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Max Born Str. 2a, 12489 Berlin, Germany
| |
Collapse
|
9
|
Tuovinen R, van Leeuwen R, Perfetto E, Stefanucci G. Electronic transport in molecular junctions: The generalized Kadanoff-Baym ansatz with initial contact and correlations. J Chem Phys 2021; 154:094104. [PMID: 33685185 DOI: 10.1063/5.0040685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The generalized Kadanoff-Baym ansatz (GKBA) offers a computationally inexpensive approach to simulate out-of-equilibrium quantum systems within the framework of nonequilibrium Green's functions. For finite systems, the limitation of neglecting initial correlations in the conventional GKBA approach has recently been overcome [Karlsson et al., Phys. Rev. B 98, 115148 (2018)]. However, in the context of quantum transport, the contacted nature of the initial state, i.e., a junction connected to bulk leads, requires a further extension of the GKBA approach. In this work, we lay down a GKBA scheme that includes initial correlations in a partition-free setting. In practice, this means that the equilibration of the initially correlated and contacted molecular junction can be separated from the real-time evolution. The information about the contacted initial state is included in the out-of-equilibrium calculation via explicit evaluation of the memory integral for the embedding self-energy, which can be performed without affecting the computational scaling with the simulation time and system size. We demonstrate the developed method in carbon-based molecular junctions, where we study the role of electron correlations in transient current signatures.
Collapse
Affiliation(s)
- Riku Tuovinen
- QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
| | - Robert van Leeuwen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Enrico Perfetto
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gianluca Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Chen M, Lopata K. First-Principles Simulations of X-ray Transient Absorption for Probing Attosecond Electron Dynamics. J Chem Theory Comput 2020; 16:4470-4478. [PMID: 32470295 PMCID: PMC7467644 DOI: 10.1021/acs.jctc.0c00122] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray transient absorption spectroscopy (XTAS) is a promising technique for measuring electron dynamics in molecules and solids with attosecond time resolutions. In XTAS, the elemental specificity and spatial locality of core-to-valence X-ray absorption is exploited to relate modulations in the time-resolved absorption spectra to local electron density variations around particular atoms. However, interpreting these absorption modulations and frequency shifts as a function of the time delay in terms of dynamics can be challenging. In this paper, we present a first-principles study of attosecond XTAS in a selection of simple molecules based on real-time time-dependent density functional theory (RT-TDDFT) with constrained DFT to emulate the state of the system following the interaction with a ultraviolet pump laser. In general, there is a decrease in the optical density and a blue shift in the frequency with increasing electron density around the absorbing atom. In carbon monoxide (CO), modulations in the O K-edge occur at the frequency of the valence electron dynamics, while for dioxygen (O2) they occur at twice the frequency, due to the indistinguishability of the oxygen atoms. In 4-aminophenol (H2NC6H4OH), likewise, there is a decrease in the optical density and a blue shift in the frequency for the oxygen and nitrogen K-edges with increasing charge density on the O and N, respectively. Similar effects are observed in the nitrogen K-edge for a long-range charge-transfer excitation in a benzene (C6H6)-tetracyanoethylene (C6N4; TCNE) dimer but with weaker modulations due to the delocalization of the charge across the entire TCNE molecule. Additionally, in all cases, there are pre-edge features corresponding to core transitions to depopulated orbitals. These potentially offer a background-free signal that only appears in pumped molecules.
Collapse
Affiliation(s)
- Min Chen
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Center for Computation and Technology, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|