1
|
Postic G, Solarz J, Loubière C, Kandiah J, Sawmynaden J, Adam F, Vilaire M, Léger T, Camadro J, Victorino DB, Potier M, Bun E, Moroy G, Kauskot A, Christophe O, Janel N. Over-expression of Dyrk1A affects bleeding by modulating plasma fibronectin and fibrinogen level in mice. J Cell Mol Med 2023; 27:2228-2238. [PMID: 37415307 PMCID: PMC10399536 DOI: 10.1111/jcmm.17817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Down syndrome is the most common chromosomal abnormality in humans. Patients with Down syndrome have hematologic disorders, including mild to moderate thrombocytopenia. In case of Down syndrome, thrombocytopenia is not associated with bleeding, and it remains poorly characterized regarding molecular mechanisms. We investigated the effects of overexpression of Dyrk1A, an important factor contributing to some major Down syndrome phenotypes, on platelet number and bleeding in mice. Mice overexpressing Dyrk1A have a decrease in platelet number by 20%. However, bleeding time was found to be reduced by 50%. The thrombocytopenia and the decreased bleeding time observed were not associated to an abnormal platelet receptors expression, to a defect of platelet activation by ADP, thrombin or convulxin, to the presence of activated platelets in the circulation or to an abnormal half-life of the platelets. To propose molecular mechanisms explaining this discrepancy, we performed a network analysis of Dyrk1A interactome and demonstrated that Dyrk1A, fibronectin and fibrinogen interact indirectly through two distinct clusters of proteins. Moreover, in mice overexpressing Dyrk1A, increased plasma fibronectin and fibrinogen levels were found, linked to an increase of the hepatic fibrinogen production. Our results indicate that overexpression of Dyrk1A in mice induces decreased bleeding consistent with increased plasma fibronectin and fibrinogen levels, revealing a new role of Dyrk1A depending on its indirect interaction with these two proteins.
Collapse
Affiliation(s)
| | - Jean Solarz
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Cécile Loubière
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | | | - Frederic Adam
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | | - Thibaut Léger
- Université Paris Cité, IJM, UMR 7592, CNRSParisFrance
- Toxicology of Contaminants Unit, Fougeres Laboratory, French Agency for Food, Environmental and Occupational Health & Safety (ANSES)FougeresFrance
| | | | - Daniella Balduino Victorino
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Marie‐Claude Potier
- ICM Paris Brain Institute, CNRS UMR7225, INSERM U1127, Sorbonne University, Hôpital de la Pitié‐SalpêtrièreParisFrance
| | - Eric Bun
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Gautier Moroy
- Université Paris Cité, BFA, UMR 8251, CNRS, ERLU1133ParisFrance
| | - Alexandre Kauskot
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | - Olivier Christophe
- HITh, UMR_S1176, Institut National de la Santé et de la Recherche Médicale, Université Paris‐Saclayle Kremlin‐BicêtreFrance
| | | |
Collapse
|
2
|
Reys V, Labesse G. SLiMAn: An Integrative Web Server for Exploring Short Linear Motif-Mediated Interactions in Interactomes. J Proteome Res 2022; 21:1654-1663. [PMID: 35642445 DOI: 10.1021/acs.jproteome.1c00964] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cells express thousands of macromolecules, and their functioning relies on multiple networks of intermolecular interactions. These interactions can be experimentally determined at different spatial and temporal resolutions. But, physical interfaces are not often delineated directly, especially in high-throughput experiments. A large fraction of protein-protein interactions involves domain and so-called SLiMs (for Short Linear Motifs). Often, SLiMs lie in disordered regions or loops. Their small size, limited sequence conservation, and loosely folded nature prevent straightforward detection. SLiMAn (Short Linear Motif Analysis), a new web server, is provided to help thorough analysis of interactomics data. From a list of putative interactants (e.g., output from an interactomics study), SLiMs (from ELM) and SLiM-recognition domains (from Pfam) are extracted, and putative pairings are displayed. Predicted results can be filtered using motif E-values, IUPred2 scores, or BioGRID interaction matches. When structural templates are available, a given SLiM and its recognition domain can be modeled using SCWRL. We illustrate here the use of SLiMAn on distinct examples, including one real-case study. We oversee wide-range applications for SLiMAn in the context of the massive analysis of protein-protein interactions. This new web server is made freely available at https://sliman.cbs.cnrs.fr.
Collapse
Affiliation(s)
- Victor Reys
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier 34090, France
| | - Gilles Labesse
- Centre de Biologie Structurale, CNRS, INSERM, Univ. Montpellier, Montpellier 34090, France
| |
Collapse
|
3
|
Postic G, Andreani J, Marcoux J, Reys V, Guerois R, Rey J, Mouton-Barbosa E, Vandenbrouck Y, Cianferani S, Burlet-Schiltz O, Labesse G, Tufféry P. Proteo3Dnet: a web server for the integration of structural information with interactomics data. Nucleic Acids Res 2021; 49:W567-W572. [PMID: 33963857 PMCID: PMC8262742 DOI: 10.1093/nar/gkab332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023] Open
Abstract
Proteo3Dnet is a web server dedicated to the analysis of mass spectrometry interactomics experiments. Given a flat list of proteins, its aim is to organize it in terms of structural interactions to provide a clearer overview of the data. This is achieved using three means: (i) the search for interologs with resolved structure available in the protein data bank, including cross-species remote homology search, (ii) the search for possibly weaker interactions mediated through Short Linear Motifs as predicted by ELM-a unique feature of Proteo3Dnet, (iii) the search for protein-protein interactions physically validated in the BioGRID database. The server then compiles this information and returns a graph of the identified interactions and details about the different searches. The graph can be interactively explored to understand the way the core complexes identified could interact. It can also suggest undetected partners to the experimentalists, or specific cases of conditionally exclusive binding. The interest of Proteo3Dnet, previously demonstrated for the difficult cases of the proteasome and pragmin complexes data is, here, illustrated in the context of yeast precursors to the small ribosomal subunits and the smaller interactome of 14-3-3zeta frequent interactors. The Proteo3Dnet web server is accessible at http://bioserv.rpbs.univ-paris-diderot.fr/services/Proteo3Dnet/.
Collapse
Affiliation(s)
- Guillaume Postic
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France.,Institut Français de Bioinformatique (IFB), UMS 3601-CNRS, Université Paris-Saclay, Orsay, France
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Victor Reys
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Rey
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gilles Labesse
- Centre de Biochimie Structurale (CBS), CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Pierre Tufféry
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| |
Collapse
|
4
|
Quignot C, Postic G, Bret H, Rey J, Granger P, Murail S, Chacón P, Andreani J, Tufféry P, Guerois R. InterEvDock3: a combined template-based and free docking server with increased performance through explicit modeling of complex homologs and integration of covariation-based contact maps. Nucleic Acids Res 2021; 49:W277-W284. [PMID: 33978743 PMCID: PMC8265070 DOI: 10.1093/nar/gkab358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
The InterEvDock3 protein docking server exploits the constraints of evolution by multiple means to generate structural models of protein assemblies. The server takes as input either several sequences or 3D structures of proteins known to interact. It returns a set of 10 consensus candidate complexes, together with interface predictions to guide further experimental validation interactively. Three key novelties were implemented in InterEvDock3 to help obtain more reliable models: users can (i) generate template-based structural models of assemblies using close and remote homologs of known 3D structure, detected through an automated search protocol, (ii) select the assembly models most consistent with contact maps from external methods that implement covariation-based contact prediction with or without deep learning and (iii) exploit a novel coevolution-based scoring scheme at atomic level, which leads to significantly higher free docking success rates. The performance of the server was validated on two large free docking benchmark databases, containing respectively 230 unbound targets (Weng dataset) and 812 models of unbound targets (PPI4DOCK dataset). Its effectiveness has also been proven on a number of challenging examples. The InterEvDock3 web interface is available at http://bioserv.rpbs.univ-paris-diderot.fr/services/InterEvDock3/.
Collapse
Affiliation(s)
- Chloé Quignot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Guillaume Postic
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Julien Rey
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pierre Granger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Samuel Murail
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Pablo Chacón
- Department of Biological Physical Chemistry, Rocasolano Institute of Physical Chemistry C.S.I.C, Madrid, Spain
| | - Jessica Andreani
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pierre Tufféry
- Université de Paris, CNRS UMR 8251, INSERM U1133, RPBS, Paris 75205, France
| | - Raphaël Guerois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
5
|
González-Avendaño M, Zúñiga-Almonacid S, Silva I, Lavanderos B, Robinson F, Rosales-Rojas R, Durán-Verdugo F, González W, Cáceres M, Cerda O, Vergara-Jaque A. PPI-MASS: An Interactive Web Server to Identify Protein-Protein Interactions From Mass Spectrometry-Based Proteomics Data. Front Mol Biosci 2021; 8:701477. [PMID: 34277709 PMCID: PMC8281810 DOI: 10.3389/fmolb.2021.701477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022] Open
Abstract
Mass spectrometry-based proteomics methods are widely used to identify and quantify protein complexes involved in diverse biological processes. Specifically, tandem mass spectrometry methods represent an accurate and sensitive strategy for identifying protein-protein interactions. However, most of these approaches provide only lists of peptide fragments associated with a target protein, without performing further analyses to discriminate physical or functional protein-protein interactions. Here, we present the PPI-MASS web server, which provides an interactive analytics platform to identify protein-protein interactions with pharmacological potential by filtering a large protein set according to different biological features. Starting from a list of proteins detected by MS-based methods, PPI-MASS integrates an automatized pipeline to obtain information of each protein from freely accessible databases. The collected data include protein sequence, functional and structural properties, associated pathologies and drugs, as well as location and expression in human tissues. Based on this information, users can manipulate different filters in the web platform to identify candidate proteins to establish physical contacts with a target protein. Thus, our server offers a simple but powerful tool to detect novel protein-protein interactions, avoiding tedious and time-consuming data postprocessing. To test the web server, we employed the interactome of the TRPM4 and TMPRSS11a proteins as a use case. From these data, protein-protein interactions were identified, which have been validated through biochemical and bioinformatic studies. Accordingly, our web platform provides a comprehensive and complementary tool for identifying protein-protein complexes assisting the future design of associated therapies.
Collapse
Affiliation(s)
- Mariela González-Avendaño
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Simón Zúñiga-Almonacid
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Boris Lavanderos
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felipe Robinson
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Roberto Rosales-Rojas
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Fabio Durán-Verdugo
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Wendy González
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| | - Mónica Cáceres
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ariela Vergara-Jaque
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile.,Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|