1
|
Savoie M, Mattison A, Genge L, Nadeau J, Śliwińska-Wilczewska S, Berthold M, Omar NM, Prášil O, Cockshutt AM, Campbell DA. Prochlorococcus marinus responses to light and oxygen. PLoS One 2024; 19:e0307549. [PMID: 39038009 PMCID: PMC11262661 DOI: 10.1371/journal.pone.0307549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Prochlorococcus marinus, the smallest picocyanobacterium, comprises multiple clades occupying distinct niches, currently across tropical and sub-tropical oligotrophic ocean regions, including Oxygen Minimum Zones. Ocean warming may open growth-permissive temperatures in new, poleward photic regimes, along with expanded Oxygen Minimum Zones. We used ocean metaproteomic data on current Prochlorococcus marinus niches, to guide testing of Prochlorococcus marinus growth across a matrix of peak irradiances, photoperiods, spectral bands and dissolved oxygen. MED4 from Clade HLI requires greater than 4 h photoperiod, grows at 25 μmol O2 L-1 and above, and exploits high cumulative diel photon doses. MED4, however, relies upon an alternative oxidase to balance electron transport, which may exclude it from growth under our lowest, 2.5 μmol O2 L-1, condition. SS120 from clade LLII/III is restricted to low light under full 250 μmol O2 L-1, shows expanded light exploitation under 25 μmol O2 L-1, but is excluded from growth under 2.5 μmol O2 L-1. Intermediate oxygen suppresses the cost of PSII photoinactivation, and possibly the enzymatic production of H2O2 in SS120, which has limitations on genomic capacity for PSII and DNA repair. MIT9313 from Clade LLIV is restricted to low blue irradiance under 250 μmol O2 L-1, but exploits much higher irradiance under red light, or under lower O2 concentrations, conditions which slow photoinactivation of PSII and production of reactive oxygen species. In warming oceans, range expansions and competition among clades will be governed not only by light levels. Short photoperiods governed by latitude, temperate winters, and depth attenuation of light, will exclude clade HLI (including MED4) from some habitats. In contrast, clade LLII/III (including SS120), and particularly clade LLIV (including MIT9313), may exploit higher light niches nearer the surface, under expanding OMZ conditions, where low O2 relieves the stresses of oxidation stress and PSII photoinhibition.
Collapse
Affiliation(s)
- Mireille Savoie
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Aurora Mattison
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
- Department of Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laurel Genge
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
- Fisheries and Oceans Canada, Ecosystems Management Branch, Dartmouth, Nova Scotia, Canada
| | - Julie Nadeau
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Sylwia Śliwińska-Wilczewska
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
- Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Maximilian Berthold
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Naaman M. Omar
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Ondřej Prášil
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
- Laboratory of Photosynthesis, Institute of Microbiology, Center Algatech, Trebon, Czech Republic
| | - Amanda M. Cockshutt
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
- Department of Chemistry, St. Frances Xavier University, Antigonish, Nova Scotia, Canada
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, New Brunswick, Canada
| |
Collapse
|
2
|
Browning TJ, Saito MA, Garaba SP, Wang X, Achterberg EP, Moore CM, Engel A, Mcllvin MR, Moran D, Voss D, Zielinski O, Tagliabue A. Persistent equatorial Pacific iron limitation under ENSO forcing. Nature 2023; 621:330-335. [PMID: 37587345 PMCID: PMC10499608 DOI: 10.1038/s41586-023-06439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.
Collapse
Affiliation(s)
- Thomas J Browning
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany.
| | - Mak A Saito
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Shungudzemwoyo P Garaba
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Xuechao Wang
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Eric P Achterberg
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - C Mark Moore
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Anja Engel
- Marine Biogeochemistry Division, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | - Dawn Moran
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Daniela Voss
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Oliver Zielinski
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- German Research Center for Artificial Intelligence (DFKI), Oldenburg, Germany
- Leibniz Institute for Baltic Sea Research Warnemünde (IOW), Warnemünde, Germany
| | - Alessandro Tagliabue
- Department of Earth, Ocean, Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Paoletti MM, Fournier GP, Dolan EL, Saito MA. Metaproteogenomic Profile of a Mesopelagic Adenylylsulfate Reductase: Course-Based Discovery Using the Ocean Protein Portal. J Proteome Res 2023; 22:2871-2879. [PMID: 37607408 PMCID: PMC10476264 DOI: 10.1021/acs.jproteome.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 08/24/2023]
Abstract
Adenylylsulfate reductase (Apr) is a flavoprotein with a dissimilatory sulfate reductase function. Its ability to catalyze the reverse reaction in sulfur oxidizers has propelled a complex phylogenetic history of transfers with sulfate reducers and made this enzyme an important protein in ocean sulfur cycling. As part of a graduate course, we analyzed metaproteomic data from the Ocean Protein Portal and observed evidence of Apr alpha (AprA) and beta (AprB) subunits in the Central Pacific Ocean. The protein was originally taxonomically attributed toChlorobium tepidum TLS, a green sulfur bacterium. However, our phylogenomic and oceanographic contextual analysis contradicted this label, instead showing that this protein is consistent with the genomic material from the newly discovered Candidatus Lambdaproteobacteriaclass, implying that the ecological role of this lineage in oxygen minimum twilight zones is underappreciated. This study illustrates how metaproteogenomic analysis can contribute to more accurate metagenomic/proteomic annotations and comprehensive ocean biogeochemical processes conducive to course-based research experiences.
Collapse
Affiliation(s)
- Madeline M. Paoletti
- Department
of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gregory P. Fournier
- Department
of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin L. Dolan
- Department
of Biochemistry and Molecular Biology, University
of Georgia, B122 Life
Sciences Bldg, Athens, Georgia 30602, United States
| | - Mak A. Saito
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
4
|
Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proc Natl Acad Sci U S A 2022; 119:e2200014119. [PMID: 36067300 PMCID: PMC9477243 DOI: 10.1073/pnas.2200014119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
Collapse
|
5
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
6
|
Simopoulos CMA, Figeys D, Lavallée-Adam M. Novel Bioinformatics Strategies Driving Dynamic Metaproteomic Studies. Methods Mol Biol 2022; 2456:319-338. [PMID: 35612752 DOI: 10.1007/978-1-0716-2124-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Constant improvements in mass spectrometry technologies and laboratory workflows have enabled the proteomics investigation of biological samples of growing complexity. Microbiomes represent such complex samples for which metaproteomics analyses are becoming increasingly popular. Metaproteomics experimental procedures create large amounts of data from which biologically relevant signal must be efficiently extracted to draw meaningful conclusions. Such a data processing requires appropriate bioinformatics tools specifically developed for, or capable of handling metaproteomics data. In this chapter, we outline current and novel tools that can perform the most commonly used steps in the analysis of cutting-edge metaproteomics data, such as peptide and protein identification and quantification, as well as data normalization, imputation, mining, and visualization. We also provide details about the experimental setups in which these tools should be used.
Collapse
Affiliation(s)
- Caitlin M A Simopoulos
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- School of Pharmaceutical Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Walworth NG, Saito MA, Lee MD, McIlvin MR, Moran DM, Kellogg RM, Fu FX, Hutchins DA, Webb EA. Why Environmental Biomarkers Work: Transcriptome-Proteome Correlations and Modeling of Multistressor Experiments in the Marine Bacterium Trichodesmium. J Proteome Res 2021; 21:77-89. [PMID: 34855411 DOI: 10.1021/acs.jproteome.1c00517] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium Trichodesmium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO2, we observed robust correlations of stress-induced proteins and RNAs (i.e., involved in transport and homeostasis) that yield useful information on the nutrient status under low and/or high CO2. Conversely, transcriptional and translational correlations of many other central metabolism pathways exhibit broad discordance. A cellular RNA and protein production/degradation model demonstrates how biomolecules with small initial inventories, such as environmentally responsive proteins, achieve large increases in fold-change units as opposed to those with a higher basal expression and inventory such as metabolic systems. Microbial cells, due to their immersion in the environment, tend to show large adaptive responses in both RNA and protein that result in transcript-protein correlations. These observations and model results demonstrate multi-omic coherence for environmental biomarkers and provide the underlying mechanism for those observations, supporting the promise for global application in detecting responses to environmental stimuli in a changing ocean.
Collapse
Affiliation(s)
- Nathan G Walworth
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Mak A Saito
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Michael D Lee
- Blue Marble Space Institute of Science, Seattle, Washington 98104, United States.,Exobiology Branch, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Matthew R McIlvin
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Dawn M Moran
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Riss M Kellogg
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Fei-Xue Fu
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Saunders JK, Gaylord DA, Held NA, Symmonds N, Dupont CL, Shepherd A, Kinkade DB, Saito MA. METATRYP v 2.0: Metaproteomic Least Common Ancestor Analysis for Taxonomic Inference Using Specialized Sequence Assemblies-Standalone Software and Web Servers for Marine Microorganisms and Coronaviruses. J Proteome Res 2020; 19:4718-4729. [PMID: 32897080 PMCID: PMC7640959 DOI: 10.1021/acs.jproteome.0c00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/30/2022]
Abstract
We present METATRYP version 2 software that identifies shared peptides across the predicted proteomes of organisms within environmental metaproteomics studies to enable accurate taxonomic attribution of peptides during protein inference. Improvements include ingestion of complex sequence assembly data categories (metagenomic and metatranscriptomic assemblies, single cell amplified genomes, and metagenome assembled genomes), prediction of the least common ancestor (LCA) for a peptide shared across multiple organisms, increased performance through updates to the backend architecture, and development of a web portal (https://metatryp.whoi.edu). Major expansion of the marine METATRYP database with predicted proteomes from environmental sequencing confirms a low occurrence of shared tryptic peptides among disparate marine microorganisms, implying tractability for targeted metaproteomics. METATRYP was designed to facilitate ocean metaproteomics and has been integrated into the Ocean Protein Portal (https://oceanproteinportal.org); however, it can be readily applied to other domains. We describe the rapid deployment of a coronavirus-specific web portal (https://metatryp-coronavirus.whoi.edu/) to aid in use of proteomics on coronavirus research during the ongoing pandemic. A coronavirus-focused METATRYP database identified potential SARS-CoV-2 peptide biomarkers and indicated very few shared tryptic peptides between SARS-CoV-2 and other disparate taxa analyzed, sharing <1% peptides with taxa outside of the betacoronavirus group, establishing that taxonomic specificity is achievable using tryptic peptide-based proteomic diagnostic approaches.
Collapse
Affiliation(s)
- Jaclyn K. Saunders
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | - David A. Gaylord
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | - Noelle A. Held
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | - Nicholas Symmonds
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | | | - Adam Shepherd
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | - Danie B. Kinkade
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| | - Mak A. Saito
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road Mailstop #51, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|