1
|
Wu F, Li W, Lu H, Li L. Recent Advances in Mass Spectrometry-Based Studies of Post-translational Modifications in Alzheimer's Disease. Mol Cell Proteomics 2025:101003. [PMID: 40449795 DOI: 10.1016/j.mcpro.2025.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/18/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline. There are over 10 million new cases of AD each year worldwide, implying one new case every 3.2 seconds. Post-translational modifications (PTMs) such as phosphorylation, glycosylation, and citrullination have emerged as key modulators of protein function in AD, influencing protein aggregation, clearance, and toxicity. Mass spectrometry (MS) has become an indispensable tool for detecting and quantifying these PTMs, offering valuable insights into their role in AD pathogenesis. This review explores recent advancements in MS-based studies of PTMs in AD, with emphasis on MS techniques like data-dependent acquisition (DDA) and data-independent acquisition (DIA), as well as enrichment methods used to characterize PTMs. The applications of these MS-based approaches to the study of various PTMs are highlighted, which have significantly accelerated the biomarker discovery process, providing new avenues for early diagnosis and therapeutic targeting. Advances in biological understanding and analytical techniques, while addressing the challenges and future directions, will be discussed.
Collapse
Affiliation(s)
- Feixuan Wu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wei Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Haiyan Lu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, WI 53706, USA; Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA; Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Vitorino R. Exploring omics signature in the cardiovascular response to semaglutide: Mechanistic insights and clinical implications. Eur J Clin Invest 2025; 55:e14334. [PMID: 39400314 DOI: 10.1111/eci.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Semaglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is a widely used drug for the treatment of type 2 diabetes that offers significant cardiovascular benefits. RESULTS This review systematically examines the proteomic and metabolomic indicators associated with the cardiovascular effects of semaglutide. A comprehensive literature search was conducted to identify relevant studies. The review utilizes advanced analytical technologies such as mass spectrometry and nuclear magnetic resonance (NMR) to investigate the molecular mechanisms underlying the effects of semaglutide on insulin secretion, weight control, anti-inflammatory activities and lipid metabolism. These "omics" approaches offer critical insights into metabolic changes associated with cardiovascular health. However, challenges remain such as individual variability in expression, the need for comprehensive validation and the integration of these data with clinical parameters. These issues need to be addressed through further research to refine these indicators and increase their clinical utility. CONCLUSION Future integration of proteomic and metabolomic data with artificial intelligence (AI) promises to improve prediction and monitoring of cardiovascular outcomes and may enable more accurate and effective management of cardiovascular health in patients with type 2 diabetes. This review highlights the transformative potential of integrating proteomics, metabolomics and AI to advance cardiovascular medicine and improve patient outcomes.
Collapse
Affiliation(s)
- Rui Vitorino
- Department of Medical Sciences, Institute of Biomedicine iBiMED, University of Aveiro, Aveiro, Portugal
- Cardiovascular R&D Centre-UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Alghamdi MA, Bahlas SM, Alamry SA, Mattar EH, Redwan EM. Exploring Anticitrullinated Antibodies (ACPAs) and Serum-Derived Exosomes Cargoes. Antibodies (Basel) 2025; 14:10. [PMID: 39982225 PMCID: PMC11843936 DOI: 10.3390/antib14010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Autoantibodies such as rheumatoid factor (RF) and anticitrullinated protein autoantibodies (ACPAs) are useful tools for rheumatoid arthritis (RA). The presence of ACPAs against citrullinated proteins (CPs), especially citrullinated fibrinogen (cFBG), seems to be a useful serological marker for diagnosing RA. RA patients' sera were found to be enriched in exosomes that can transmit many proteins. Exosomes have been found to express citrullinated protein such as cFBG. OBJECTIVE We conducted this study in two stages. In the first phase, we aimed to evaluate the association between autoantibodies and risk factors. In the next step, ACPA-positive serum samples from the first phase were subjected to exosomal studies to explore the presence of cFBG, which is a frequent target for ACPAs. METHODS We investigated the autoantibodies in one hundred and sixteen Saudi RA patients and correlated with host-related risk factors. Exosomes were extracted from patients' sera and examined for the presence of cFBG using monoclonal antibodies. RESULTS The study reported a high female-to-male ratio of 8:1, and seropositive RA (SPRA) was more frequent among included RA patients. The frequency and the levels of ACPAs were similar in both genders. Autoantibodies incidences have a direct correlations with patient age, while the average titers decreased as the age increased. Further, the highest incidence and levels of autoantibodies were reported in patients with RA duration between 5 and 10 years. Smoking and family history have no impact on autoantibody, except for ACPAs titers among smokers' RA. Our analysis of serum exosomes revealed that about 50% of SPRA patients expressed cFBG. CONCLUSIONS The female-to-male ratio is 8:1, which is higher than the global ratio. We can conclude that patients' age and disease duration contribute to the autoantibodies, particularly RF and anti-MCV, whereas smoking and family history had no effects on autoantibodies. We detected cFBG in all exosomes from SPRA patients; thus, we suggest that the precise mechanism of exosomes in RA pathogenesis can be investigated to develop effective treatment strategies.
Collapse
Affiliation(s)
- Mohammed A. Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Laboratory Department, University Medical Services Center, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
| | - Sami M. Bahlas
- Department of Internal Medicine, Faculty of Medicine, King Abdulaziz University, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Sultan Abdulmughni Alamry
- Immunology Diagnostic Laboratory Department, King Abdulaziz University Hospital, P.O. Box 80215, Jeddah 21589, Saudi Arabia
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Stastna M. Post-translational modifications of proteins in cardiovascular diseases examined by proteomic approaches. FEBS J 2025; 292:28-46. [PMID: 38440918 PMCID: PMC11705224 DOI: 10.1111/febs.17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/22/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024]
Abstract
Over 400 different types of post-translational modifications (PTMs) have been reported and over 200 various types of PTMs have been discovered using mass spectrometry (MS)-based proteomics. MS-based proteomics has proven to be a powerful method capable of global PTM mapping with the identification of modified proteins/peptides, the localization of PTM sites and PTM quantitation. PTMs play regulatory roles in protein functions, activities and interactions in various heart related diseases, such as ischemia/reperfusion injury, cardiomyopathy and heart failure. The recognition of PTMs that are specific to cardiovascular pathology and the clarification of the mechanisms underlying these PTMs at molecular levels are crucial for discovery of novel biomarkers and application in a clinical setting. With sensitive MS instrumentation and novel biostatistical methods for precise processing of the data, low-abundance PTMs can be successfully detected and the beneficial or unfavorable effects of specific PTMs on cardiac function can be determined. Moreover, computational proteomic strategies that can predict PTM sites based on MS data have gained an increasing interest and can contribute to characterization of PTM profiles in cardiovascular disorders. More recently, machine learning- and deep learning-based methods have been employed to predict the locations of PTMs and explore PTM crosstalk. In this review article, the types of PTMs are briefly overviewed, approaches for PTM identification/quantitation in MS-based proteomics are discussed and recently published proteomic studies on PTMs associated with cardiovascular diseases are included.
Collapse
Affiliation(s)
- Miroslava Stastna
- Institute of Analytical Chemistry of the Czech Academy of SciencesBrnoCzech Republic
| |
Collapse
|
5
|
Wang B, Li Z, Shi Y, Zhu Z, Fields L, Shelef MA, Li L. Mass Spectrometry-Based Precise Identification of Citrullinated Histones via Limited Digestion and Biotin Derivative Tag Enrichment. Anal Chem 2024; 96:2309-2317. [PMID: 38285917 PMCID: PMC11526168 DOI: 10.1021/acs.analchem.3c02646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Histone citrullination is an essential epigenetic post-translational modification (PTM) that affects many important physiological and pathological processes, but effective tools to study histone citrullination are greatly limited due to several challenges, including the small mass shift caused by this PTM and its low abundance in biological systems. Although previous studies have reported frequent occurrences of histone citrullination, these methods failed to provide a high-throughput and site-specific strategy to detect histone citrullination. Recently, we developed a biotin thiol tag that enabled precise identification of protein citrullination coupled with mass spectrometry. However, very few histone citrullination sites were identified, likely due to the highly basic nature of these proteins. In this study, we develop a novel method utilizing limited digestion and biotin derivative tag enrichment to facilitate direct in vivo identification of citrullination sites on histones. We achieve improved coverage of histone identification via partial enzymatic digestion and lysine block by dimethylation. With biotin tag-assisted chemical derivatization and enrichment, we also achieve precise annotation of histone citrullination sites with high confidence. We further compare different fragmentation methods and find that the electron-transfer-dissociation-based approach enables the most in-depth analysis and characterization. In total, we unambiguously identify 18 unique citrullination sites on histones in human astrocytoma U87 cells, including 15 citrullinated sites being detected for the first time. Some of these citrullination sites are observed to exhibit noticeable alterations in response to DNA damage, which demonstrates the superiority of our strategy in understanding the roles of histone citrullination in critical biological processes.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Zexin Zhu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Miriam A Shelef
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, United States
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Lachman Institute for Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States
| |
Collapse
|
6
|
Wang B, Fields L, Li L. Recent advances in characterization of citrullination and its implication in human disease research: From method development to network integration. Proteomics 2023; 23:e2200286. [PMID: 36546832 PMCID: PMC10285031 DOI: 10.1002/pmic.202200286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Post-translational modifications (PTM) of proteins increase the functional diversity of the proteome and have been implicated in the pathogenesis of numerous diseases. The most widely understood modifications include phosphorylation, methylation, acetylation, O-linked/N-linked glycosylation, and ubiquitination, all of which have been extensively studied and documented. Citrullination is a historically less explored, yet increasingly studied, protein PTM which has profound effects on protein conformation and protein-protein interactions. Dysregulation of protein citrullination has been associated with disease development and progression. Identification and characterization of citrullinated proteins is highly challenging, complicated by the low cellular abundance of citrullinated proteins, making it difficult to identify and quantify the extent of citrullination in samples, coupled with challenges associated with development of mass spectrometry (MS)-based methods, as the corresponding mass shift is relatively small, +0.984 Da, and identical to the mass shift of deamidation. The focus of this review is to discuss recent advancements of citrullination-specific MS approaches and integration of the potential methodology for improved citrullination identification and characterization. In addition, the association of citrullination in disease networks is also highlighted.
Collapse
Affiliation(s)
- Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lauren Fields
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- School of Pharmacy, Lachman Institute for Pharmaceutical Development, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Palecek SP, Ralphe JC, Kamp TJ, Ge Y. Top-down proteomics of myosin light chain isoforms define chamber-specific expression in the human heart. J Mol Cell Cardiol 2023; 181:89-97. [PMID: 37327991 PMCID: PMC10528938 DOI: 10.1016/j.yjmcc.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an 'atrial' and 'ventricular' isoform, so called because they are believed to exhibit chamber-restricted expression in the heart. However, recently the chamber-specific expression of MLC isoforms in the human heart has been questioned. Herein, we analyzed the expression of MLC-1 and -2 atrial and ventricular isoforms in each of the four cardiac chambers in adult non-failing donor hearts using top-down mass spectrometry (MS)-based proteomics. Strikingly, we detected an isoform thought to be ventricular, MLC-2v (gene: MYL2), in the atria and confirmed the protein sequence using tandem MS (MS/MS). For the first time, a putative deamidation post-translation modification (PTM) located on MLC-2v in atrial tissue was localized to amino acid N13. MLC-1v (MYL3) and MLC-2a (MYL7) were the only MLC isoforms exhibiting chamber-restricted expression patterns across all donor hearts. Importantly, our results unambiguously show that MLC-1v, not MLC-2v, is ventricle-specific in adult human hearts. Moreover, we found elevated MLC-2 phosphorylation in male hearts compared to female hearts across each cardiac chamber. Overall, top-down proteomics allowed an unbiased analysis of MLC isoform expression throughout the human heart, uncovering previously unexpected isoform expression patterns and PTMs.
Collapse
Affiliation(s)
- Elizabeth F Bayne
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kalina J Rossler
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy J Aballo
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily A Chapman
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA; Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Martin M, Nilsson SC, Eikrem D, Fromell K, Scavenius C, Vogt LM, Bielecka E, Potempa J, Enghild JJ, Nilsson B, Ekdahl KN, Kapetanovic MC, Blom AM. Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis. Front Immunol 2023; 14:1203506. [PMID: 37426666 PMCID: PMC10326043 DOI: 10.3389/fimmu.2023.1203506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Dysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. Methods Citrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. Results C1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. Conclusion Citrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
Collapse
Affiliation(s)
- Myriam Martin
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sara C. Nilsson
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - David Eikrem
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Leonie M. Vogt
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- School of Natural Sciences, Linnæus University, Kalmar, Sweden
| | - Meliha C. Kapetanovic
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| |
Collapse
|
9
|
Bayne EF, Rossler KJ, Gregorich ZR, Aballo TJ, Roberts DS, Chapman EA, Guo W, Ralphe JC, Kamp TJ, Ge Y. Top-down Proteomics of Myosin Light Chain Isoforms Define Chamber-Specific Expression in the Human Heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525767. [PMID: 36747670 PMCID: PMC9900887 DOI: 10.1101/2023.01.26.525767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Myosin functions as the "molecular motor" of the sarcomere and generates the contractile force necessary for cardiac muscle contraction. Myosin light chains 1 and 2 (MLC-1 and -2) play important functional roles in regulating the structure of the hexameric myosin molecule. Each of these light chains has an "atrial" and "ventricular" isoform, so called because they are believed to exhibit chamber-restricted expression in the heart. However, recently the chamber-specific expression of MLC isoforms in the human heart has been questioned. Herein, we analyzed the expression of MLC-1 and -2 atrial and ventricular isoforms in each of the four cardiac chambers in adult non-failing donor hearts using top-down mass spectrometry (MS)-based proteomics. Strikingly, we detected an isoform thought to be ventricular, MLC-2v, in the atria and confirmed the protein sequence using tandem MS (MS/MS). For the first time, a putative deamidation post-translation modification (PTM) located on MLC-2v in atrial tissue was localized to amino acid N13. MLC-1v and MLC-2a were the only MLC isoforms exhibiting chamber-restricted expression patterns across all donor hearts. Importantly, our results unambiguously show that MLC-1v, not MLC-2v, is ventricle-specific in adult human hearts. Overall, top-down proteomics allowed us an unbiased analysis of MLC isoform expression throughout the human heart, uncovering previously unexpected isoform expression patterns and PTMs.
Collapse
|
10
|
Shi Y, Li Z, Wang B, Shi X, Ye H, Delafield DG, Lv L, Ye Z, Chen Z, Ma F, Li L. Enabling Global Analysis of Protein Citrullination via Biotin Thiol Tag-Assisted Mass Spectrometry. Anal Chem 2022; 94:17895-17903. [PMID: 36512406 DOI: 10.1021/acs.analchem.2c03844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Citrullination is a key post-translational modification (PTM) that affects protein structures and functions. Although it has been linked to various biological processes and disease pathogenesis, the underlying mechanism remains poorly understood due to a lack of effective tools to enrich, detect, and localize this PTM. Herein, we report the design and development of a biotin thiol tag that enables derivatization, enrichment, and confident identification of citrullination via mass spectrometry. We perform global mapping of the citrullination proteome of mouse tissues. In total, we identify 691 citrullination sites from 432 proteins which represents the largest data set to date. We discover novel distribution and functions of this PTM. This study depicts a landscape of protein citrullination and lays the foundation for further deciphering their physiological and pathological roles.
Collapse
Affiliation(s)
- Yatao Shi
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zihui Li
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Xudong Shi
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin─Madison, Madison, Wisconsin 53792, United States
| | - Hui Ye
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Daniel G Delafield
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Langlang Lv
- School of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhengqing Ye
- Medicinal Chemistry Center, School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Fengfei Ma
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin─Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
11
|
Steckel A, Révész Á, Papp D, Uray K, Drahos L, Schlosser G. Stepwise Collision Energy-Resolved Tandem Mass Spectrometric Experiments for the Improved Identification of Citrullinated Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1176-1186. [PMID: 35621259 DOI: 10.1021/jasms.2c00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The use of tandem mass spectrometry (MS/MS) is a fundamental prerequisite of reliable protein identification and quantification in mass-spectrometry-based proteomics. In bottom-up and middle-down proteomics, proteins are identified by the characteristic fragments of their constituting peptides. Post-translational modifications (PTMs) often further complicate proteome analyses. Citrullination is an increasingly studied PTM converting arginines to citrullines (Cit, X) and is implicated in several autoimmune and neurological diseases as well as different types of cancer. Confirmation of citrullination is known to be very challenging since it results in the same molecular mass change as Asn/Gln deamidation. In this study, we explore which MS/MS characteristics can be used for the reliable identification of citrullination. We synthesized several peptides incorporating Cit residues that model enzymatic cleavages of different proteins with verified or putative citrullination. Collision-induced dissociation was used to investigate the energy dependence of Byonic and Mascot scores and confirmed sequence coverage (CSC) along with the neutral loss of HNCO characteristic to citrulline side chains. We found that although the recommended values (19-45 V) for ramped collision energy settings cover the optimal Mascot, Byonic, or %CSC scores effectively, the diagnostic HNCO loss from precursors and fragments may reach their maximum intensities at lower and higher collision energies, respectively. Therefore, we suggest broadening the ramp range to ∼5-60 V to obtain more favorable identification rates for citrullinated peptides. We also found that Byonic was more successful in correctly identifying citrullinated peptides with deamidated residues than Mascot.
Collapse
Affiliation(s)
- Arnold Steckel
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Ágnes Révész
- Research Centre for Natural Sciences, MS Proteomics Research Group, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Dávid Papp
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - Katalin Uray
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| | - László Drahos
- Research Centre for Natural Sciences, MS Proteomics Research Group, Magyar tudósok körútja 2, 1117 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary
| |
Collapse
|
12
|
Zhu G, Jin L, Sun W, Wang S, Liu N. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochim Biophys Acta Rev Cancer 2022; 1877:188735. [PMID: 35577141 DOI: 10.1016/j.bbcan.2022.188735] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Gengjun Zhu
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Lifang Jin
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Shuang Wang
- Dermatological department, The Second Hospital of Jilin University, Changchun, China.
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China; Central Laboratory, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
13
|
Li Z, Wang B, Yu Q, Shi Y, Li L. 12-Plex DiLeu Isobaric Labeling Enabled High-Throughput Investigation of Citrullination Alterations in the DNA Damage Response. Anal Chem 2022; 94:3074-3081. [PMID: 35129972 PMCID: PMC9055876 DOI: 10.1021/acs.analchem.1c04073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein citrullination is a key post-translational modification (PTM) that leads to the loss of positive charge on arginine and consequent protein structural and functional changes. Though it has been indicated to play critical roles in various physiological and pathological processes, effective analytical tools are largely limited due to a few challenges such as the small mass shift induced by this PTM and its low-abundance nature. Recently, we developed a biotin thiol tag, which enabled large-scale profiling of protein citrullination from complex biological samples via mass spectrometry. However, a high-throughput quantitative approach is still in great need to further improve the understanding of this PTM. In this study, we report an efficient pipeline using our custom-developed N,N-dimethyl leucine isobaric tags to achieve a multiplexed quantitative analysis of citrullination from up to 12 samples for the first time. We then apply this strategy to investigating citrullination alterations in response to DNA damage stress using human cell lines. We unveil important biological functions regulated by protein citrullination and observe hypercitrullination on RNA-binding proteins and DNA repair proteins, respectively. Our results reveal the involvement of citrullination in DNA damage pathways and may provide new insights into DNA-damage-related disease pathogenesis.
Collapse
Affiliation(s)
- Zihui Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Bin Wang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Qinying Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yatao Shi
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States,Corresponding Author: . Phone: +1-608-265-8491. Fax: +1-608-262-5345
| |
Collapse
|