1
|
Wei L, Song L, Dunker AK, Foster JA, Uversky VN, Goh GKM. A Comparative Experimental and Computational Study on the Nature of the Pangolin-CoV and COVID-19 Omicron. Int J Mol Sci 2024; 25:7537. [PMID: 39062780 PMCID: PMC11277539 DOI: 10.3390/ijms25147537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The relationship between pangolin-CoV and SARS-CoV-2 has been a subject of debate. Further evidence of a special relationship between the two viruses can be found by the fact that all known COVID-19 viruses have an abnormally hard outer shell (low M disorder, i.e., low content of intrinsically disordered residues in the membrane (M) protein) that so far has been found in CoVs associated with burrowing animals, such as rabbits and pangolins, in which transmission involves virus remaining in buried feces for a long time. While a hard outer shell is necessary for viral survival, a harder inner shell could also help. For this reason, the N disorder range of pangolin-CoVs, not bat-CoVs, more closely matches that of SARS-CoV-2, especially when Omicron is included. The low N disorder (i.e., low content of intrinsically disordered residues in the nucleocapsid (N) protein), first observed in pangolin-CoV-2017 and later in Omicron, is associated with attenuation according to the Shell-Disorder Model. Our experimental study revealed that pangolin-CoV-2017 and SARS-CoV-2 Omicron (XBB.1.16 subvariant) show similar attenuations with respect to viral growth and plaque formation. Subtle differences have been observed that are consistent with disorder-centric computational analysis.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China;
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100089, China;
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
2
|
Annamalai A, Karuppaiya V, Ezhumalai D, Cheruparambath P, Balakrishnan K, Venkatesan A. Nano-based techniques: A revolutionary approach to prevent covid-19 and enhancing human awareness. J Drug Deliv Sci Technol 2023; 86:104567. [PMID: 37313114 PMCID: PMC10183109 DOI: 10.1016/j.jddst.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/22/2023] [Accepted: 05/13/2023] [Indexed: 06/15/2023]
Abstract
In every century of history, there are many new diseases emerged, which are not even cured by many developed countries. Today, despite of scientific development, new deadly pandemic diseases are caused by microorganisms. Hygiene is considered to be one of the best methods of avoiding such communicable diseases, especially viral diseases. Illness caused by SARS-CoV-2 was termed COVID-19 by the WHO, the acronym derived from "coronavirus disease 2019. The globe is living in the worst epidemic era, with the highest infection and mortality rate owing to COVID-19 reaching 6.89% (data up to March 2023). In recent years, nano biotechnology has become a promising and visible field of nanotechnology. Interestingly, nanotechnology is being used to cure many ailments and it has revolutionized many aspects of our lives. Several COVID-19 diagnostic approaches based on nanomaterial have been developed. The various metal NPs, it is highly anticipated that could be viable and economical alternatives for treating drug resistant in many deadly pandemic diseases in near future. This review focuses on an overview of nanotechnology's increasing involvement in the diagnosis, prevention, and therapy of COVID-19, also this review provides readers with an awareness and knowledge of importance of hygiene.
Collapse
Affiliation(s)
- Asaikkutti Annamalai
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| | - Vimala Karuppaiya
- Cancer Nanomedicine Laboratory, Department of Zoology, School of Life Sciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Dhineshkumar Ezhumalai
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | | | - Kaviarasu Balakrishnan
- Dr. Krishnamoorthi Foundation for Advanced Scientific Research, Vellore, 632 001, Tamil Nadu, India
- Manushyaa Blossom Private Limited, Chennai, 600 102, Tamil Nadu, India
| | - Arul Venkatesan
- Marine Biotechnology Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605 014, Puducherry, India
| |
Collapse
|
3
|
Abbasi SAA, Noor T, Mylavarapu M, Sahotra M, Bashir HA, Bhat RR, Jindal U, Amin U, V A, Siddiqui HF. Double Trouble Co-Infections: Understanding the Correlation Between COVID-19 and HIV Viruses. Cureus 2023; 15:e38678. [PMID: 37288215 PMCID: PMC10243673 DOI: 10.7759/cureus.38678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 06/09/2023] Open
Abstract
A global outbreak of coronavirus disease 2019 (COVID-19), an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), mounted a substantial threat to public health worldwide. It initially emerged as a mere outbreak in Wuhan, China, in December 2019 and quickly engulfed the entire world, evolving into a global pandemic, consuming millions of lives and leaving a catastrophic effect on our lives in ways unimaginable. The entire healthcare system was significantly impacted and HIV healthcare was not spared. In this article, we reviewed the effect of HIV on COVID-19 disease and the ramifications of the recent COVID-19 pandemic over HIV management strategies. Our review highlights that contrary to the instinctive belief that HIV should render patients susceptible to COVID-19 infection, the studies depicted mixed results, although comorbidities and other confounders greatly affected the results. Few studies showed a higher rate of in-hospital mortality due to COVID-19 among HIV patients; however, the use of antiretroviral therapy had no consequential effect. COVID-19 vaccination was deemed safe among HIV patients in general. The recent pandemic can destabilize the HIV epidemic control as it hugely impacted access to care and preventive services and led to a marked reduction in HIV testing. The collision of these two disastrous pandemics warrants the need to materialize rigorous epidemiological measures and health policies, but most importantly, brisk research in prevention strategies to mitigate the combined burden of the two viruses and to battle similar future pandemics.
Collapse
Affiliation(s)
| | - Tarika Noor
- Department of Medicine, Government Medical College, Patiala, Ludhiana, IND
| | | | - Monika Sahotra
- Department of Medicine, Bukovinian State Medical University, Chernivtsi, UKR
| | - Hunmble A Bashir
- Forensic Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Urmi Jindal
- Department of Medicine, Karamshi Jethabhai Somaiya Medical College, Mumbai, IND
| | - Uzma Amin
- Pathology, Rawalpindi Medical University, Rawalpindi, PAK
| | - Anushree V
- Department of Medicine, Jagadguru Jayadeva Murugarajendra (JJM) Medical College, Davangere, IND
| | - Humza F Siddiqui
- Department of Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
4
|
Bruno L, Nappo MA, Ferrari L, Di Lecce R, Guarnieri C, Cantoni AM, Corradi A. Nipah Virus Disease: Epidemiological, Clinical, Diagnostic and Legislative Aspects of This Unpredictable Emerging Zoonosis. Animals (Basel) 2022; 13:ani13010159. [PMID: 36611767 PMCID: PMC9817766 DOI: 10.3390/ani13010159] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nipah virus (NiV) infection is a viral disease caused by a Henipavirus, belonging to the Paramyxoviridae family, responsible for a zoonosis. The course of the disease can be very serious and lead to death. NiV natural hosts are fruit bats (also known as megabats) belonging to the Pteropodidae family, especially those of the Pteropus genus. Natural infection in domestic animals has been described in farming pigs, horses, domestic and feral dogs and cats. Natural NiV transmission is possible intra-species (pig-to-pig, human-to-human) and inter-species (flying bat-to-human, pig-to-human, horse-to-human). The infection can be spread by humans or animals in different ways. It is peculiar how the viral transmission modes among different hosts also change depending on the geographical area for different reasons, including different breeding methods, eating habits and the recently identified genetic traits/molecular features of main virus proteins related to virulence. Outbreaks have been described in Malaysia, Singapore, Bangladesh, India and the Philippines with, in some cases, severe respiratory and neurological disease and high mortality in both humans and pigs. Diagnosis can be made using different methods including serological, molecular, virological and immunohistochemical methods. The cornerstones for control of the disease are biosecurity (via the correct management of reservoir and intermediate/amplifying hosts) and potential vaccines which are still under development. However, the evaluation of the potential influence of climate and anthropogenic changes on the NiV reservoir bats and their habitat as well as on disease spread and inter-specific infections is of great importance. Bats, as natural reservoirs of the virus, are responsible for the viral spread and, therefore, for the outbreaks of the disease in humans and animals. Due to the worldwide distribution of bats, potential new reports and spillovers are not to be dismissed in the future.
Collapse
Affiliation(s)
- Luigi Bruno
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
- Correspondence: (L.B.); (L.F.)
| | - Maria Anna Nappo
- Department of Prevention, Azienda Sanitaria Locale (A.S.L.) Napoli 3 Sud, 80053 Castellammare di Stabia, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
- Correspondence: (L.B.); (L.F.)
| | - Rosanna Di Lecce
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Chiara Guarnieri
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Anna Maria Cantoni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Attilio Corradi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
5
|
Tibebu NS, Kassie BA, Anteneh TA, Rade BK. Depression, anxiety and stress among HIV-positive pregnant women in Ethiopia during the COVID-19 pandemic. Trans R Soc Trop Med Hyg 2022; 117:317-325. [PMID: 36579933 DOI: 10.1093/trstmh/trac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/19/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Assessing the maternal mental health status during the coronavirus disease 2019 (COVID-19) pandemic is necessary to prevent the occurrence of severe mental disorders. Prenatal depression, anxiety and stress disorders are prominent in pregnant women living with human immunodeficiency virus (HIV) and highly associated with poor maternal and neonatal outcomes. Therefore this study aimed to assess the level of depression, anxiety, and stress among HIV-positive pregnant women in Ethiopia during the COVID-19 pandemic. METHODS An institution-based cross-sectional study was conducted in Amhara region referral hospitals from 17 October 2020 to 1 March 2021. A systematic random sampling technique was used to select 423 eligible women. A structured, pretested and interviewer-administered questionnaire was employed to collect the data. A multivariable logistic regression analysis was implemented to identify factors associated with women's depression, anxiety and stress. Statistical association was certain based on the adjusted odds ratio (AOR) with its 95% confidence interval (CI) and p-values ≤0.05. RESULTS Prenatal depression, anxiety and stress among HIV-positive pregnant women were 37.6% (95% CI 33 to 42.3), 42.1 (95% CI 37.7 to 46.7) and 34.8% (95% CI 30.3 to 39.2), respectively. Having an HIV-negative sexual partner (AOR 1.91 [95% CI 1.16 to 3.15]) and being on antiretroviral therapy >1 year (AOR 2.18 [95% CI 1.41 to 3.36]) were found to be statistically significant with women's antenatal depression, while unplanned pregnancy (AOR 1.09 [95% CI 1.02 to 2.33]) and did not discuss with the sexual partner about HIV (AOR 3.21 [95% CI 2.12 to 7.07]) were the factors associated with prenatal anxiety. CONCLUSIONS In this study, more than one in three HIV-positive pregnant women had depression and anxiety. Thus, implementing strategies to prevent unplanned pregnancy and advocating open discussion with sexual partners about HIV will play a large role in reducing pregnancy-related depression and anxiety.
Collapse
Affiliation(s)
- Nebiyu Solomon Tibebu
- Department of Clinical Midwifery, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belayneh Ayanaw Kassie
- Department of Women's and Family Health, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tazeb Alemu Anteneh
- Department of Clinical Midwifery, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bayew Kelkay Rade
- Department of General Midwifery, School of Midwifery, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Chavda VP, Vuppu S, Mishra T, Kamaraj S, Patel AB, Sharma N, Chen ZS. Recent review of COVID-19 management: diagnosis, treatment and vaccination. Pharmacol Rep 2022; 74:1120-1148. [PMID: 36214969 PMCID: PMC9549062 DOI: 10.1007/s43440-022-00425-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 02/06/2023]
Abstract
The idiopathic Coronavirus disease 2019 (COVID-19) pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has reached global proportions; the World Health Organization (WHO) declared it as a public health emergency during the month of January 30, 2020. The major causes of the rise of new variants of SARS-CoV-2 are genetic mutations and recombination. Some of the variants with high infection and transmission rates are termed as variants of concern (VOCs) like currently Omicron variants. Pregnant women, aged people, and immunosuppressed and compromised patients constitute the most susceptible human population to the SARS-CoV-2 infection, especially to the new evolving VOCs. To effectively manage the pathological condition of infection, the focus should be directed towards prevention and prophylactic approach. In this narrative review, we aimed to analyze the current scenario of COVID-19 management and discuss the treatment and prevention strategies. We also focused on the complications prevalent during the COVID-19 and post-COVID period and to discuss the novel approaches developed for mitigation of the global pandemic. We have also emphasized on the COVID-19 management approaches for the special population including children, pregnant women, aged groups, and immunocompromised patients. We conclude that the advancements in therapeutic and pharmacological domains have provided opportunities to develop and design novel diagnosis, treatment, and prevention strategies. New advanced techniques such as RT-LAMP, RT-qPCR, High-Resolution Computed Tomography, etc., efficiently diagnose patients with SARS-CoV-2 infection. In the case of treatment options, new drugs like paxlovid, combinations of β-lactum drugs and molnupiravir are found to be effective against even the new emerging variants. In addition, vaccination is an essential approach to prevent the infection or to reduce its severity. Vaccines for against COVID-19 from Comirnaty by Pfizer-BioNTech, SpikeVax by Moderna, and Vaxzevria by Oxford-AstraZeneca are approved and used widely. Similarly, numerous vaccines have been developed with different percentages of effectiveness against VOCs. New developments like nanotechnology and AI can be beneficial in providing an efficient and reliable solution for the suppression of SARS-CoV-2. Public health concerns can be efficiently treated by a unified scientific approach, public engagement, and better diagnosis.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India.
| | - Suneetha Vuppu
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Toshika Mishra
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Sathvika Kamaraj
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Aayushi B Patel
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Nikita Sharma
- Department of Biotechnology, Science, Innovation, and Society Research Lab 115, Hexagon (SMV), Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA.
| |
Collapse
|
7
|
A Study on the Nature of SARS-CoV-2 Using the Shell Disorder Models: Reproducibility, Evolution, Spread, and Attenuation. Biomolecules 2022; 12:biom12101353. [PMID: 36291562 PMCID: PMC9599796 DOI: 10.3390/biom12101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
The basic tenets of the shell disorder model (SDM) as applied to COVID-19 are that the harder outer shell of the virus shell (lower PID—percentage of intrinsic disorder—of the membrane protein M, PIDM) and higher flexibility of the inner shell (higher PID of the nucleocapsid protein N, PIDN) are correlated with the contagiousness and virulence, respectively. M protects the virion from the anti-microbial enzymes in the saliva and mucus. N disorder is associated with the rapid replication of the virus. SDM predictions are supported by two experimental observations. The first observation demonstrated lesser and greater presence of the Omicron particles in the lungs and bronchial tissues, respectively, as there is a greater level of mucus in the bronchi. The other observation revealed that there are lower viral loads in 2017-pangolin-CoV, which is predicted to have similarly low PIDN as Omicron. The abnormally hard M, which is very rarely seen in coronaviruses, arose from the fecal–oral behaviors of pangolins via exposure to buried feces. Pangolins provide an environment for coronavirus (CoV) attenuation, which is seen in Omicron. Phylogenetic study using M shows that COVID-19-related bat-CoVs from Laos and Omicron are clustered in close proximity to pangolin-CoVs, which suggests the recurrence of interspecies transmissions. Hard M may have implications for long COVID-19, with immune systems having difficulty degrading viral proteins/particles.
Collapse
|
8
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell Disorder Models Detect That Omicron Has Harder Shells with Attenuation but Is Not a Descendant of the Wuhan-Hu-1 SARS-CoV-2. Biomolecules 2022; 12:631. [PMID: 35625559 PMCID: PMC9139003 DOI: 10.3390/biom12050631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Before the SARS-CoV-2 Omicron variant emergence, shell disorder models (SDM) suggested that an attenuated precursor from pangolins may have entered humans in 2017 or earlier. This was based on a shell disorder analysis of SARS-CoV-1/2 and pangolin-Cov-2017. The SDM suggests that Omicron is attenuated with almost identical N (inner shell) disorder as pangolin-CoV-2017 (N-PID (percentage of intrinsic disorder): 44.8% vs. 44.9%-lower than other variants). The outer shell disorder (M-PID) of Omicron is lower than that of other variants and pangolin-CoV-2017 (5.4% vs. 5.9%). COVID-19-related CoVs have the lowest M-PIDs (hardest outer shell) among all CoVs. This is likely to be responsible for the higher contagiousness of SARS-CoV-2 and Omicron, since hard outer shell protects the virion from salivary/mucosal antimicrobial enzymes. Phylogenetic study using M reveals that Omicron branched off from an ancestor of the Wuhan-Hu-1 strain closely related to pangolin-CoVs. M, being evolutionarily conserved in COVID-19, is most ideal for COVID-19 phylogenetic study. Omicron may have been hiding among burrowing animals (e.g., pangolins) that provide optimal evolutionary environments for attenuation and increase shell hardness, which is essential for fecal-oral-respiratory transmission via buried feces. Incoming data support SDM e.g., the presence of fewer infectious particles in the lungs than in the bronchi upon infection.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - James A. Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA;
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290 Moscow Region, Russia
| |
Collapse
|
9
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Computational, Experimental, and Clinical Evidence of a Specific but Peculiar Evolutionary Nature of (COVID-19) SARS-CoV-2. J Proteome Res 2022; 21:874-890. [PMID: 35142523 PMCID: PMC8864774 DOI: 10.1021/acs.jproteome.2c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/30/2022]
Abstract
The shell disorder models have predicted that SARS-CoV-2 is of a specific but peculiar evolutionary nature. All coronaviruses (CoVs) closely related to SARS-CoV-2 have been found to have the hardest outer shells (M protein) among CoVs. This hard shell (low M percentage of intrinsic disorder (PID)) is associated with burrowing animals, for example, pangolins, and is believed to be responsible for the high contagiousness of SARS-CoV-2 because it will be more resistant to antimicrobial enzymes found in saliva/mucus. Incoming clinical and experimental data do support this along with a prediction based on another aspect of the shell (N, inner shell) disorder models that SARS-CoV-1 is more virulent than SARS-CoV-2 because SARS-CoV-2 produces fewer virus copies in vital organs even if large amounts of infections particles are shed orally and nasally. A phylogenetic study using M reveals a closer relationship of SARS-CoV to pangolin-CoVs than the bat-RaTG13 found in Yunnan, China. Previous studies may have been confused by recombinations that were poorly handled. The shell disorder models suggest that a pangolin-CoV strain may have entered the human population in 2017 or before as an attenuated virus, which could explain why SARS-CoV is found to be highly adapted to humans.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics,
Indiana University School of Medicine, Indianapolis, Indiana
46202, United States
| | - James A. Foster
- Department of Biological Sciences,
University of Idaho, Moscow, Idaho 83844, United
States
- Institute for Bioinformatics and Evolutionary Studies,
University of Idaho, Moscow, Idaho 83844, United
States
| | - Vladimir N. Uversky
- Department of Molecular Medicine, USF Health Byrd
Alzheimer’s Research Institute, Morsani College of Medicine,
University of South Florida, Tampa, Florida 33620,
United States
- Laboratory of New Methods in Biology, Institute for
Biological Instrumentation of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological Research of the
Russian Academy of Sciences”, Pushchino, Moscow Region 142290,
Russia
| |
Collapse
|
10
|
Tenchov R, Zhou QA. Intrinsically Disordered Proteins: Perspective on COVID-19 Infection and Drug Discovery. ACS Infect Dis 2022; 8:422-432. [PMID: 35196007 PMCID: PMC8887652 DOI: 10.1021/acsinfecdis.2c00031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 12/23/2022]
Abstract
Since the beginning of the COVID-19 pandemic caused by SARS-CoV-2, millions of patients have been diagnosed and many of them have died from the disease worldwide. The identification of novel therapeutic targets are of utmost significance for prevention and treatment of COVID-19. SARS-CoV-2 is a single-stranded RNA virus with a 30 kb genome packaged into a membrane-enveloped virion, transcribing several tens of proteins. The belief that the amino acid sequence of proteins determines their 3D structure which, in turn, determines their function has been a central principle of molecular biology for a long time. Recently, it has been increasingly realized, however, that there is a large group of proteins that lack a fixed or ordered 3D structure, yet they exhibit important biological activities─so-called intrinsically disordered proteins and protein regions (IDPs/IDRs). Disordered regions in viral proteins are generally associated with viral infectivity and pathogenicity because they endow the viral proteins the ability to easily and promiscuously bind to host proteins; therefore, the proteome of SARS-CoV-2 has been thoroughly examined for intrinsic disorder. It has been recognized that, in fact, the SARS-CoV-2 proteome exhibits significant levels of structural order, with only the nucleocapsid (N) structural protein and two of the nonstructural proteins being highly disordered. The spike (S) protein of SARS-CoV-2 exhibits significant levels of structural order, yet its predicted percentage of intrinsic disorder is still higher than that of the spike protein of SARS-CoV. Noteworthy, however, even though IDPs/IDRs are not common in the SARS-CoV-2 proteome, the existing ones play major roles in the functioning and virulence of the virus and are thus promising drug targets for rational antiviral drug design. Presented here is a COVID-19 perspective on the intrinsically disordered proteins, summarizing recent results on the SARS-CoV-2 proteome disorder features, their physiological and pathological relevance, and their prominence as prospective drug target sites.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American Chemical Society,
Columbus, Ohio 43210, United States
| | | |
Collapse
|
11
|
Tayarani N MH. Applications of artificial intelligence in battling against covid-19: A literature review. CHAOS, SOLITONS, AND FRACTALS 2021; 142:110338. [PMID: 33041533 PMCID: PMC7532790 DOI: 10.1016/j.chaos.2020.110338] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.
Collapse
Affiliation(s)
- Mohammad-H Tayarani N
- Biocomputation Group, School of Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, United Kingdom
| |
Collapse
|
12
|
Affiliation(s)
- Suman S. Thakur
- Proteomics and Cell Signaling, Lab
W110, Centre for Cellular & Molecular
Biology, Habsiguda, Uppal
Road, Hyderabad 500 007, Telangana, India
| |
Collapse
|
13
|
Goh GKM, Dunker AK, Foster JA, Uversky VN. Shell Disorder Analysis Suggests That Pangolins Offered a Window for a Silent Spread of an Attenuated SARS-CoV-2 Precursor among Humans. J Proteome Res 2020; 19:4543-4552. [PMID: 32790362 PMCID: PMC7640969 DOI: 10.1021/acs.jproteome.0c00460] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 02/06/2023]
Abstract
A model to predict the relative levels of respiratory and fecal-oral transmission potentials of coronaviruses (CoVs) by measuring the percentage of protein intrinsic disorder (PID) of the M (Membrane) and N (Nucleoprotein) proteins in their outer and inner shells, respectively, was built before the MERS-CoV outbreak. With MPID = 8.6% and NPID = 50.2%, the 2003 SARS-CoV falls into group B, which consists of CoVs with intermediate levels of both fecal-oral and respiratory transmission potentials. Further validation of the model came with MERS-CoV (MPID = 9%, NPID = 44%) and SARS-CoV-2 (MPID = 5.5%, NPID = 48%) falling into the groups C and B, respectively. Group C contains CoVs with higher fecal-oral but lower respiratory transmission potentials. Unlike SARS-CoV, SARS-CoV-2 with MPID = 5.5% has one of the hardest outer shells among CoVs. Because the hard shell is able to resist the antimicrobial enzymes in body fluids, the infected person is able to shed large quantities of viral particles via saliva and mucus, which could account for the higher contagiousness of SARS-COV-2. Further searches have found that high rigidity of the outer shell is characteristic for the CoVs of burrowing animals, such as rabbits (MPID = 5.6%) and pangolins (MPID = 5-6%), which are in contact with the buried feces. A closer inspection of pangolin-CoVs from 2017 to 2019 reveals that pangolins provided a unique window of opportunity for the entry of an attenuated SARS-CoV-2 precursor into the human population in 2017 or earlier, with the subsequent slow and silent spread as a mild cold that followed by its mutations into the current more virulent form. Evidence of this lies in both the genetic proximity of the pangolin-CoVs to SARS-CoV-2 (∼90%) and differences in N disorder. A 2017 pangolin-CoV strain shows evidence of higher levels of attenuation and higher fecal-oral transmission associated with lower human infectivity via having lower NPID (44.8%). Our shell disorder model predicts this to be a SARS-CoV-2 vaccine strain, as lower inner shell disorder is associated with the lesser virulence in a variety of viruses.
Collapse
Affiliation(s)
| | - A. Keith Dunker
- Center
for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - James A. Foster
- Department
of Biological Sciences, University of Idaho, Moscow, Idaho 83844, United States
- Institute
for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho 83844, United States
| | - Vladimir N. Uversky
- Department
of Molecular Medicine, USF Health Byrd Alzheimer’s Research
Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33620, United States
- Laboratory
of New Methods in Biology, Institute for Biological Instrumentation
of the Russian Academy of Sciences, Federal
Research Center “Pushchino Scientific Center for Biological
Research of the Russian Academy of Sciences”, Pushchino, Moscow 119991, Russia
| |
Collapse
|