1
|
Toprak U, Teets NM, Cedden D, Güney G. Lipid Metabolism in Diapause. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40100333 DOI: 10.1007/5584_2025_850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Organisms living in temperate and polar environments encounter seasonal fluctuations that entail changes in temperature, resource availability, and biotic interactions. Thus, adaptations for synchronizing the life cycle with essential resources and persisting through unfavorable conditions are critical. Diapause, a programmed period of developmental arrest and metabolic depression, is widely used by insects to survive winter and synchronize the life cycle. In some cases, insects spend over half the year (or in some cases, multiple years) in a nonfeeding diapause state. Thus, diapause is energetically challenging, and insects accumulate surplus energy stores and/or suppress metabolism to make it through the winter. As the most energy-dense, and often most abundant, energy reserve in insects, lipids play a central role in diapause energetics. In this chapter, we provide an overview of lipid metabolism in the context of diapause. First, as this is the only chapter in this book that covers diapause, we present some of the general features of diapause. We then discuss the role of lipids as an essential energy store during diapause, focusing on patterns of lipid accumulation before diapause and patterns of utilization during diapause. In the next section, we outline some other roles of lipids during diapause in addition to their role as an energy store. Finally, we end the chapter by discussing the molecular regulation of lipid metabolism in diapause, which has received increased attention in recent years.
Collapse
Affiliation(s)
- Umut Toprak
- Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara, Türkiye.
| | - Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, KY, USA.
| | - Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Izadi H. Endocrine and enzymatic shifts during insect diapause: a review of regulatory mechanisms. Front Physiol 2025; 16:1544198. [PMID: 40161974 PMCID: PMC11949959 DOI: 10.3389/fphys.2025.1544198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Insect diapause is a vital survival strategy that enables insects to enter a state of suspended development, allowing them to withstand unfavorable environmental conditions. During diapause, insects significantly lower their metabolic rate and build up energy reserves, which they gradually utilize throughout this period. The regulation of diapause involves a complex interaction of hormones and enzymes. Juvenile hormones (JHs) affect adults and larvae differently; in adults, the absence of JH typically triggers diapause, while in larvae, the presence of JH encourages this state. Ecdysteroids, which regulate molting and metamorphosis, are carefully controlled to prevent premature development. Reduced signaling of insulin-like peptides enhances stress resistance and promotes energy storage. Several enzymes play crucial roles in the metabolic adjustments necessary for diapause. These adjustments include the degradation of JH, the ecdysteroidogenic pathway, and the metabolism of fatty acids, glycogen, cryoprotectants, and stress responses. Understanding diapause's molecular and biochemical mechanisms is essential for fundamental entomological research and practical applications. Despite recent advances, many aspects of diapause regulation, especially the interactions among hormonal pathways and the role of enzymes, remain poorly understood. This review analyzes approximately 250 papers to consolidate current knowledge on the enzymatic and hormonal regulation of diapause. It offers a comprehensive overview of key processes based on recent studies and suggests future research directions to fill gaps in our understanding of this significant biological phenomenon. The review also lays the groundwork for enhancing pest control strategies and ecological conservation by deepening our understanding of diapause mechanisms.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| |
Collapse
|
3
|
McAfee A, Martinet B, Przybyla K, Degueldre F, Hoover SE, Aron S, Foster LJ. Conserved and Unique Protein Expression Patterns Across Reproductive Stage Transitions in Social Hymenopteran Queens. Mol Ecol 2024; 33:e17568. [PMID: 39491325 PMCID: PMC11589692 DOI: 10.1111/mec.17568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/05/2024]
Abstract
Hymenopteran queens are collectively highly fecund, often long-lived individuals that undergo dramatic physiological changes after they mate and establish a nest. However, the degree to which these changes are conserved among species with different life histories is not well-defined. We conducted a comparative proteomic study investigating differences between reproductive stages (virgin, mated and established queens) of Apis mellifera, Bombus impatiens, B. terrestris and Lasius niger. We analysed haemolymph for all species except L. niger, for which a whole-body analysis was performed due to the small size of these queens. We identified conserved upregulation of proteins involved in anatomical and system development as queens transition to establishing a nest in all species except B. terrestris. We also identified conserved patterns of vitellogenin, vitellogenin receptor and immune-responsive protein (IRP)30, all of which are proteins typically associated with oviposition. However, expression patterns of other immune proteins, heat-shock proteins (HSPs), detoxification enzymes and antioxidant enzymes were more dissimilar, with some species exhibiting similar trends and co-occurrence through reproductive stages, while others exhibited variable or opposite patterns. These conserved and unique profiles likely in part reflect similarities and differences in selective pressure on reproductive stages of each species and may indicate differing abilities to respond to emergent pathogens or environmental change.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Department of Applied EcologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Baptiste Martinet
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
| | | | - Félicien Degueldre
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Shelley E. Hoover
- Department of Biological SciencesUniversity of LethbridgeLethbridgeAlbertaCanada
| | - Serge Aron
- Department of Evolutionary Biology & EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith LaboratoriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
4
|
Yang X, Zhao X, Zhao Z, Du J. Genome-wide analysis reveals transcriptional and translational changes during diapause of the Asian corn borer (Ostrinia furnacalis). BMC Biol 2024; 22:206. [PMID: 39272107 PMCID: PMC11401443 DOI: 10.1186/s12915-024-02000-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Diapause, a pivotal phase in the insect life cycle, enables survival during harsh environmental conditions. Unraveling the gene expression profiles of the diapause process helps uncover the molecular mechanisms that underlying diapause, which is crucial for understanding physiological adaptations. In this study, we utilize RNA-seq and Ribo-seq data to examine differentially expressed genes (DEGs) and translational efficiency during diapause of Asian corn borer (Ostrinia furnacalis, ACB). RESULTS Our results unveil genes classified as "forwarded", "exclusive", "intensified", or "buffered" during diapause, shedding light on their transcription and translation regulation patterns. Furthermore, we explore the landscape of lncRNAs (long non-coding RNAs) during diapause and identify differentially expressed lncRNAs, suggesting their roles in diapause regulation. Comparative analysis of different types of diapause in insects uncovers shared and unique KEGG pathways. While shared pathways highlight energy balance, exclusive pathways in the ACB larvae indicate insect-specific adaptations related to nutrient utilization and stress response. Interestingly, our study also reveals dynamic changes in the HSP70 gene family and proteasome pathway during diapause. Manipulating HSP protein levels and proteasome pathway by HSP activator or inhibitor and proteasome inhibitor affects diapause, indicating their vital role in the process. CONCLUSIONS In summary, these findings enhance our knowledge of how insects navigate challenging conditions through intricate molecular mechanisms.
Collapse
Affiliation(s)
- Xingzhuo Yang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Liu Y, Su L, Wang R, Dai X, Li X, Chang Y, Zhao S, Chen H, Yin Z, Wu G, Zhou H, Zheng L, Zhai Y. Comparative 4D Label-Free Quantitative Proteomic Analysis of Bombus terrestris Provides Insights into Proteins and Processes Associated with Diapause. Int J Mol Sci 2023; 25:326. [PMID: 38203496 PMCID: PMC10778897 DOI: 10.3390/ijms25010326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diapause, an adaptative strategy for survival under harsh conditions, is a dynamic multi-stage process. Bombus terrestris, an important agricultural pollinator, is declining in the wild, but artificial breeding is possible by imitating natural conditions. Mated queen bees enter reproductive diapause in winter and recover in spring, but the regulatory mechanisms remain unclear. Herein, we conducted a comparative 4D label-free proteomic analysis of queen bees during artificial breeding at seven timepoints, including pre-diapause, diapause, and post-diapause stages. Through bioinformatics analysis of proteomic and detection of substance content changes, our results found that, during pre-diapause stages, queen bees had active mitochondria with high levels of oxidative phosphorylation, high body weight, and glycogen and TAG content, all of which support energy consumption during subsequent diapause. During diapause stages, body weight and water content were decreased but glycerol increased, contributing to cold resistance. Dopamine content, immune defense, and protein phosphorylation were elevated, while fat metabolism, protein export, cell communication, signal transduction, and hydrolase activity decreased. Following diapause termination, JH titer, water, fatty acid, and pyruvate levels increased, catabolism, synaptic transmission, and insulin signaling were stimulated, ribosome and cell cycle proteins were upregulated, and cell proliferation was accelerated. Meanwhile, TAG and glycogen content decreased, and ovaries gradually developed. These findings illuminate changes occurring in queen bees at different diapause stages during commercial production.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiuxue Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yuqing Chang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Guang’an Wu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
| | - Hao Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China; (Y.L.); (L.S.); (R.W.); (X.D.); (X.L.); (Y.C.); (S.Z.); (H.C.); (Z.Y.); (L.Z.)
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China; (G.W.); (H.Z.)
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| |
Collapse
|
6
|
Wynants E, Van Dun C, Lenaerts N, Princen SA, Tuyttens E, Shpigler HY, Wenseleers T, Van Oystaeyen A. Uncovering the role of juvenile hormone in ovary development and egg laying in bumble bees. JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104557. [PMID: 37625783 DOI: 10.1016/j.jinsphys.2023.104557] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Juvenile hormone (JH) regulates developmental and physiological processes in insects. In bumble bees, the hormone acts as a gonadotropin that mediates ovary development, but the exact physiological pathways involved in ovary activation and subsequent egg laying are poorly understood. In this study, we examine how queen hibernation state, caste, and species impact the gonadotropic effect of JH in bumble bee queens through methoprene (JH analogue) application. We extend previous research by assessing queen egg laying and colony initiation, alongside ovary development. Furthermore, we compared sensitivity of workers of both species to the juvenile hormone's gonadotropic effect. In both bumble bee species, the ovaries of hibernated queens were developed five to six days after breaking diapause, regardless of methoprene treatment. By contrast, methoprene did have a stimulatory effect on ovary development in non-hibernated queens. The dose needed to obtain this effect was higher in B. impatiens. Methoprene did not have gonadotropic effects in callow workers of both species. These results indicate that the physiological effect of exogenous methoprene application varies according to species, caste and hibernation status. Interestingly, despite gonadotropic effects in non-hibernated queens, oviposition was not accelerated by JH. This suggests that JH alone is insufficient to induce egg laying and that an additional stimulus, which is naturally present in hibernated queens, is required. Consequently, our findings indicate that other physiological processes, beyond a rise in JH alone, are required for oviposition and colony initiation.
Collapse
Affiliation(s)
- Enya Wynants
- Biobest Group NV, Research and Development, 2260 Westerlo, Belgium
| | - Cédric Van Dun
- Laboratory of Socio-ecology and Social Evolution, University of Leuven, 3000 Leuven, Belgium
| | - Nancy Lenaerts
- Biobest Group NV, Research and Development, 2260 Westerlo, Belgium
| | - Sarah A Princen
- Biobest Group NV, Research and Development, 2260 Westerlo, Belgium
| | - Ella Tuyttens
- Biobest Group NV, Research and Development, 2260 Westerlo, Belgium
| | - Hagai Y Shpigler
- Department of Entomology, Agricultural Research Organization, The Volcani Institute, Rishon LeZion, Israel
| | - Tom Wenseleers
- Laboratory of Socio-ecology and Social Evolution, University of Leuven, 3000 Leuven, Belgium
| | - Annette Van Oystaeyen
- Biobest Group NV, Research and Development, 2260 Westerlo, Belgium; Laboratory of Socio-ecology and Social Evolution, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
7
|
Chen ZZ, Wang X, Kong X, Zhao YM, Xu MH, Gao YQ, Huang HY, Liu FH, Wang S, Xu YY, Kang ZW. Quantitative transcriptomic and proteomic analyses reveal the potential maintenance mechanism of female adult reproductive diapause in Chrysoperla nipponensis. PEST MANAGEMENT SCIENCE 2023; 79:1897-1911. [PMID: 36683402 DOI: 10.1002/ps.7375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 01/23/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The green lacewing Chrysoperla nipponensis is an important natural enemy of many insect pests and exhibits reproductive diapause to overwinter. Our previous studies showed that adult C. nipponensis enters reproductive diapause under a short-day photoperiod. However, the molecular mechanism underlying diapause maintenance in C. nipponensis is still unknown. RESULTS The total lipid and triglyceride content showed the reservation and degradation of energy during diapause in C. nipponensis. Thus, we performed combined transcriptomic and proteomic analyses of female reproductive diapause in C. nipponensis at three ecophysiological phases (initiation, maintenance and termination). A total of 64 388 unigenes and 5532 proteins were identified from the transcriptome and proteome. In-depth dissection of the gene-expression dynamics revealed that differentially expressed genes and proteins were predominately involved in the lipid and carbohydrate metabolic pathways, in particular fatty acid metabolism, metabolic pathways and the citrate cycle. Among of these genes, TIM, CLK, JHAMT2, PMK, HMGS, HMGR, FKBP39, Kr-h1, Phm, ECR, IR1, ILP3, ILP4, mTOR, ACC, LSD1 and LSD2 were differentially expressed in diapause and non-diapause female adults of C. nipponensis. The expression patterns of these genes were consistent with the occurrence of vitellogenesis and expression of either Vg or VgR. CONCLUSION Our findings indicated that diapause adult C. nipponensis accumulate energy resources to overwinter. Transcriptomic and proteomic analyses suggested candidate key genes involved in the maintenance of C. nipponensis during adult reproductive diapause. Taken together, these results provide in-depth knowledge to understand the maintenance mechanism of C. nipponensis during adult reproductive diapause. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhen-Zhen Chen
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xiao Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Xue Kong
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yue-Ming Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Ming-Hui Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Yu-Qing Gao
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hai-Yi Huang
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Fang-Hua Liu
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yong-Yu Xu
- College of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhi-Wei Kang
- School of Life Sciences, Institutes of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
8
|
Zhang Y, Xu H, Wang Z, Jie H, Gao F, Cai M, Wang K, Chen D, Guo R, Lin Z, Niu Q, Ji T. A key gene for the climatic adaptation of Apis cerana populations in China according to selective sweep analysis. BMC Genomics 2023; 24:100. [PMID: 36879226 PMCID: PMC9987060 DOI: 10.1186/s12864-023-09167-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Apis cerana is widely distributed in China and, prior to the introduction of western honeybees, was the only bee species kept in China. During the long-term natural evolutionary process, many unique phenotypic variations have occurred among A. cerana populations in different geographical regions under varied climates. Understanding the molecular genetic basis and the effects of climate change on the adaptive evolution of A. cerana can promote A. cerana conservation in face of climate change and allow for the effective utilization of its genetic resources. RESULT To investigate the genetic basis of phenotypic variations and the impact of climate change on adaptive evolution, A. cerana workers from 100 colonies located at similar geographical latitudes or longitudes were analyzed. Our results revealed an important relationship between climate types and the genetic variation of A. cerana in China, and a greater influence of latitude compared with longitude was observed. Upon selection and morphometry analyses combination for populations under different climate types, we identified a key gene RAPTOR, which was deeply involved in developmental processes and influenced the body size. CONCLUSION The selection of RAPTOR at the genomic level during adaptive evolution could allow A. cerana to actively regulate its metabolism, thereby fine-tuning body sizes in response to harsh conditions caused by climate change, such as food shortages and extreme temperatures, which may partially elucidate the size differences of A. cerana populations. This study provides crucial support for the molecular genetic basis of the expansion and evolution of naturally distributed honeybee populations.
Collapse
Affiliation(s)
- Yi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Xu
- Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei, 230061, China
| | - Zhi Wang
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China
| | - Haoliang Jie
- Jinzhong Agriculture and Rural Affairs Bureau, Jinzhong, 030601, China
| | - Fuchao Gao
- Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang, 157043, China
| | - Minqi Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Kang Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Dafu Chen
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rui Guo
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zheguang Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin, 132108, China.
| | - Ting Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Brenzinger K, Maihoff F, Peters MK, Schimmer L, Bischler T, Classen A. Temperature and livestock grazing trigger transcriptome responses in bumblebees along an elevational gradient. iScience 2022; 25:105175. [PMID: 36204268 PMCID: PMC9530833 DOI: 10.1016/j.isci.2022.105175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/26/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022] Open
Abstract
Climate and land-use changes cause increasing stress to pollinators but the molecular pathways underlying stress responses are poorly understood. Here, we analyzed the transcriptomic response of Bombus lucorum workers to temperature and livestock grazing. Bumblebees sampled along an elevational gradient, and from differently managed grassland sites (livestock grazing vs unmanaged) in the German Alps did not differ in the expression of genes known for thermal stress responses. Instead, metabolic energy production pathways were upregulated in bumblebees sampled in mid- or high elevations or during cool temperatures. Extensive grazing pressure led to an upregulation of genetic pathways involved in immunoregulation and DNA-repair. We conclude that widespread bumblebees are tolerant toward temperature fluctuations in temperate mountain environments. Moderate temperature increases may even release bumblebees from metabolic stress. However, transcriptome responses to even moderate management regimes highlight the completely underestimated complexity of human influence on natural pollinators. Upregulation of energy metabolism pathways in Bombus lucorum with increasing elevation Genes known for thermal stress responses did not change with increased elevation Bombus lucorum are tolerant toward relatively broad temperature fluctuations Grazing lead to an upregulation in genetic information processes in B. lucorum
Collapse
Affiliation(s)
- Kristof Brenzinger
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Corresponding author
| | - Fabienne Maihoff
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Leonie Schimmer
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Liu Y, Wang R, Su L, Zhao S, Dai X, Chen H, Wu G, Zhou H, Zheng L, Zhai Y. Integrative Proteomic and Phosphoproteomic Analyses Revealed Complex Mechanisms Underlying Reproductive Diapause in Bombus terrestris Queens. INSECTS 2022; 13:862. [PMID: 36292811 PMCID: PMC9604461 DOI: 10.3390/insects13100862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Reproductive diapause is an overwintering strategy for Bombus terrestris, which is an important pollinator for agricultural production. However, the precise mechanisms underlying reproductive diapause in bumblebees remain largely unclear. Here, a combination analysis of proteomics and phosphoproteomics was used to reveal the mechanisms that occur during and after diapause in three different phases: diapause (D), postdiapause (PD), and founder postdiapause (FPD). In total, 4655 proteins and 10,600 phosphorylation sites of 3339 proteins were identified. Diapause termination and reactivation from D to the PD stage were characterized by the upregulation of proteins associated with ribosome assembly and biogenesis, transcription, and translation regulation in combination with the upregulation of phosphoproteins related to neural signal transmission, hormone biosynthesis and secretion, and energy-related metabolism. Moreover, the reproductive program was fully activated from PD to the FPD stage, as indicated by the upregulation of proteins related to fat digestion and absorption, the biosynthesis of unsaturated fatty acids, fatty acid elongation, protein processing in the endoplasmic reticulum, and the upregulation of energy-related metabolism at the phosphoproteome level. We also predicted a kinase-substrate interaction network and constructed protein-protein networks of proteomic and phosphoproteomic data. These results will help to elucidate the mechanisms underlying the regulation of diapause in B. terrestris for year-round mass breeding.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Guang’an Wu
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Zhou
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, 23788 Gongye North Road, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- Shandong Provincial Engineering Technology Research Center on Biocontrol of Crops Pests, Jinan 250100, China
| |
Collapse
|
11
|
Li YY, Chen JJ, Liu MY, He WW, Reynolds JA, Wang YN, Wang MQ, Zhang LS. Enhanced Degradation of Juvenile Hormone Promotes Reproductive Diapause in the Predatory Ladybeetle Coccinella Septempunctata. Front Physiol 2022; 13:877153. [PMID: 35574499 PMCID: PMC9099232 DOI: 10.3389/fphys.2022.877153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Improved knowledge on the regulation of reproductive diapause in Coccinella septempunctata, an important predator of aphids, is crucial for improving shelf-life and mass production of the ladybeetles. In many insects, the absence of juvenile hormone (JH) is a central regulator of reproductive diapause. JH is principally degraded by JH esterase (JHE) and JH epoxide hydrolase (JHEH). Previous studies have shown that genes encoding these enzymes were upregulated in early diapause of C. septempunctata, but whether increased JH degradation contributes to the reduction of JH levels and facilitates reproductive diapause remains unknown. Here, we investigate the role of JH and JH degradation genes during reproductive diapause in C. septempunctata females. Applying methoprene, a JH analogue, to the diapause preparation females clearly elevated JH signaling and reversed diapause program, suggesting that a lower level of JH is critical for the induction of reproductive diapause in the ladybeetle. Full-length cDNA sequences of JHE and JHEH were cloned and characterized, and their deduced proteins contain all the conserved active domains and typical motifs as identified in other insects. The expressions of JHE and JHEH were both significantly increased in diapause preparation and remained at a high level for a period throughout diapause, and then decreased after the termination of diapause. Knocking down these JH degradation genes clearly increased the expression levels of JH-inducible genes Krüppel-homolog 1 (Kr-h1) and vitellogenin (Vg), indicating an elevated JH level. Simultaneously, silencing JH degradation genes distinctly reduced diapause-related features and promotes reproduction, indicated by accelerated ovary growth, yolk deposition, and suppressed lipid accumulation. These results indicate that the enhanced JH degradation plays a critical role in regulating reproductive diapause of C. septempunctata.
Collapse
Affiliation(s)
- Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Chen
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Yao Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Wei He
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Evolutionary Biology, The Ohio State University, Columbus, OH, United States
| | - Ya-Nan Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Li-Sheng Zhang,
| |
Collapse
|
12
|
Shpigler HY, Magory Cohen T, Ben-Shimol E, Ben-Betzalel R, Levin E. Juvenile hormone functions as a metabolic rate accelerator in bumble bees (Bombus terrestris). Horm Behav 2021; 136:105073. [PMID: 34634696 DOI: 10.1016/j.yhbeh.2021.105073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022]
Abstract
Juvenile hormone (JH) is a modulator of many physiological transitions in insects, including molting, metamorphosis, diapause, and reproduction. These processes often include metabolic changes. Here we show that JH accelerates metabolic rate in bumble bees (Bombus terrestris). We reduced JH levels in worker bumble bees by removing their corpora allata (allatectomy) and elevated JH levels in queens through a topical application of JH-III. Natural and high JH levels increased the metabolic rate in both workers and queens and triggered an increased protein turnover rate. Following the treatments, JH also caused an increase in food consumption and a reduction in lipid levels and flight muscle mass of queens, and a reduction in lipids levels in workers. Furthermore, the topical application of a JH analog to queens prior to their diapause caused a decline in their survival of diapause. These findings support the hypothesis that JH acts as a metabolic rate accelerator, initiating a resource shift in bumble bees, and thereby reducing diapause survival in queens. Based on previous studies on JH we suggest that, additional to its behavioral or physiological effects, JH's function as an accelerator of metabolic processes is conserved across different life stages and insect species.
Collapse
Affiliation(s)
| | - Tali Magory Cohen
- School of Zoology, Faculty of Life Sciences, Tel-Aviv, Israel; Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eran Levin
- School of Zoology, Faculty of Life Sciences, Tel-Aviv, Israel.
| |
Collapse
|
13
|
Karp X. Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diapause is a state of developmental arrest adopted in response to or in anticipation of environmental conditions that are unfavorable for growth. In many cases, diapause is facultative, such that animals may undergo either a diapause or a non-diapause developmental trajectory, depending on environmental cues. Diapause is characterized by enhanced stress resistance, reduced metabolism, and increased longevity. The ability to postpone reproduction until suitable conditions are found is important to the survival of many animals, and both vertebrate and invertebrate species can undergo diapause. The decision to enter diapause occurs at the level of the whole animal, and thus hormonal signaling pathways are common regulators of the diapause decision. Unlike other types of developmental arrest, diapause is programmed, such that the diapause developmental trajectory includes a pre-diapause preparatory phase, diapause itself, recovery from diapause, and post-diapause development. Therefore, developmental pathways are profoundly affected by diapause. Here, I review two conserved hormonal pathways, insulin/IGF signaling (IIS) and nuclear hormone receptor signaling (NHR), and their role in regulating diapause across three animal phyla. Specifically, the species reviewed are Austrofundulus limnaeus and Nothobranchius furzeri annual killifishes, Caenorhabditis elegans nematodes, and insect species including Drosophila melanogaster, Culex pipiens, and Bombyx mori. In addition, the developmental changes that occur as a result of diapause are discussed, with a focus on how IIS and NHR pathways interact with core developmental pathways in C. elegans larvae that undergo diapause.
Collapse
|