1
|
Fernández-Irigoyen J, Santamaría E. Recent Advances in Human Cerebrospinal Fluid Proteomics. Methods Mol Biol 2025; 2914:3-12. [PMID: 40167906 DOI: 10.1007/978-1-0716-4462-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cerebrospinal fluid (CSF) proteomics has become an alternative that allows zooming-in where pathophysiological alterations are taking place, detecting protein mediators that might eventually be considered as potential biomarkers in neurological or psychiatric diseases. From a technological point of view, mass-spectrometry-based-proteomics as well as antibody/aptamer-based platforms allow the simultaneous monitoring of secreted and circulating proteins in a broad concentration range in a robust manner, generating innovative facets in biomarker validation. This chapter highlights recent discoveries in the field of CSF protein analysis, covering sample preparation methods for proteomic workflows, shotgun proteomics, subproteomics, and other omics applied to CSF.
Collapse
Affiliation(s)
- Joaquín Fernández-Irigoyen
- Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Proteomics Platform, Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| |
Collapse
|
2
|
Liu C, Xu M, Li W, Cao X, Wang Y, Chen H, Zhang T, Lu M, Xie H, Chen Y. Quantitative Pattern of hPTMs by Mass Spectrometry-Based Proteomics with Implications for Triple-Negative Breast Cancer. J Proteome Res 2024; 23:1495-1505. [PMID: 38576392 DOI: 10.1021/acs.jproteome.4c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Triple-negative breast cancer (TNBC) is known for its aggressive nature, and TNBC management is currently challenging due to the lack of effective targets. Despite the importance of histone post-translational modifications (hPTMs) in breast cancer, their associations with molecular subtypes of breast cancer, especially TNBC, are poorly understood. In this study, a combination of untargeted and targeted proteomics approaches, supplemented by a derivatization method, was applied to breast cancer cells and tissue samples. Untargeted proteomics of eight breast cancer cell lines belonging to different molecular subtypes revealed 36 modified peptides with 12 lysine modification sites in histone H3, and the most frequently reported top 5 histone H3 methylation and acetylation sites were covered. Then, targeted proteomics was carried out to quantify the total 20 target hPTMs at the covered modification sites (i.e., mono-, di-, trimethylation, and acetylation for each site), indicating the difficulty in distinguishing TNBC cells from normal cells. Subsequently, the analysis in TNBC patients revealed significant expression differences in 4 specific hPTMs (H3K14ac, H3K27me1, H3K36me2, and H3K36me3) between TNBC and adjacent normal tissue samples. These unique hPTM patterns allowed for the differentiation of TNBC from normal cases. This finding provides promising implications for advancing targeted treatment strategies for TNBC in the future.
Collapse
Affiliation(s)
- Chunyan Liu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Wan Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Cao
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yan Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Haoran Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tianqi Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meiyan Lu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing 211166, China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
3
|
Zhang J, Liu D, Xiang J, Yang M. Combining Glial Fibrillary Acidic Protein and Neurofilament Light Chain for the Diagnosis of Major Depressive Disorder. Anal Chem 2024; 96:1693-1699. [PMID: 38231554 DOI: 10.1021/acs.analchem.3c04825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Major depressive disorder (MDD) is a prevalent brain disorder affecting more than 2% of the world's population. Due to the lack of well-specific biomarkers, it is difficult to distinguish MDD from other diseases with similar clinical symptoms (such as Alzheimer's disease and cerebral thrombosis). In this work, we provided a strategy to address this issue by constructing a combinatorial biomarker of serum glial fibrillary acidic protein (GFAP) and neurofilament light chain (NFL). To achieve the convenient and sensitive detection of two proteins, we developed an electrochemical immunosandwich sensor using two metal-ion-doped carbon dots (Pb-CDs and Cu-CDs) as probes for signal output. Each probe contains approximately 300 Pb2+ or 200 Cu2+, providing excellent signal amplification. This method achieved detection limits of 0.3 pg mL-1 for GFAP and 0.2 pg mL-1 for NFL, lower than most of the reported detection limits. Analysis of real serum samples showed that the concentration ratio of GFAP to NFL, which is associated with the relative degree of brain inflammation and neurodegeneration, is suitable for not only distinguishing MDD from healthy individuals but also specifically distinguishing MDD from Alzheimer's disease and cerebral thrombosis. The good specificity gives the combinatorial GFAP/NFL biomarker broad application prospects in the screening, diagnosis, and treatment of MDD.
Collapse
Affiliation(s)
- JinXia Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Dan Liu
- Eye Center of Xiangya Hospital, Central South University, Changsha 410083, P. R. China
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Minghui Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Singh R, Hussain J, Kaur A, Jamdare BG, Pathak D, Garg K, Kaur R, Shankar S, Sunkaria A. The hidden players: Shedding light on the significance of post-translational modifications and miRNAs in Alzheimer's disease development. Ageing Res Rev 2023; 90:102002. [PMID: 37423542 DOI: 10.1016/j.arr.2023.102002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent, expensive, lethal, and burdening neurodegenerative disease of this century. The initial stages of this disease are characterized by a reduced ability to encode and store new memories. Subsequent cognitive and behavioral deterioration occurs during the later stages. Abnormal cleavage of amyloid precursor protein (APP) resulting in amyloid-beta (Aβ) accumulation along with hyperphosphorylation of tau protein are the two characteristic hallmarks of AD. Recently, several post-translational modifications (PTMs) have been identified on both Aβ as well as tau proteins. However, a complete understanding of how different PTMs influence the structure and function of proteins in both healthy and diseased conditions is still lacking. It has been speculated that these PTMs might play vital roles in the progression of AD. In addition, several short non-coding microRNA (miRNA) sequences have been found to be deregulated in the peripheral blood of Alzheimer patients. The miRNAs are single-stranded RNAs that control gene expression by causing mRNA degradation, deadenylation, or translational repression and have been implicated in the regulation of several neuronal and glial activities. The lack of comprehensive understanding regarding disease mechanisms, biomarkers, and therapeutic targets greatly hampers the development of effective strategies for early diagnosis and the identification of viable therapeutic targets. Moreover, existing treatment options for managing the disease have proven to be ineffective and provide only temporary relief. Therefore, understanding the role of miRNAs and PTMs in AD can provide valuable insights into disease mechanisms, aid in the identification of biomarkers, facilitate the discovery of novel therapeutic targets, and inspire innovative treatments for this challenging condition.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Julfequar Hussain
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Balaji Gokul Jamdare
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Deepti Pathak
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kanchan Garg
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Ramanpreet Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Shivani Shankar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Aditya Sunkaria
- Department of Biotechnology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
5
|
Lin TT, Zhang T, Kitata RB, Liu T, Smith RD, Qian WJ, Shi T. Mass spectrometry-based targeted proteomics for analysis of protein mutations. MASS SPECTROMETRY REVIEWS 2023; 42:796-821. [PMID: 34719806 PMCID: PMC9054944 DOI: 10.1002/mas.21741] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 05/03/2023]
Abstract
Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.
Collapse
Affiliation(s)
- Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Reta B. Kitata
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - Tujin Shi
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| |
Collapse
|
6
|
Yola B, Karaman C, Özcan N, Atar N, Polat İ, Yola M. Electrochemical tau protein immunosensor based on MnS/GO/PANI and magnetite‐incorporated gold nanoparticles. ELECTROANAL 2022. [DOI: 10.1002/elan.202200159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bahar Yola
- Gaziantep Islam Bilim ve Teknoloji Universitesi TURKEY
| | | | | | | | | | | |
Collapse
|
7
|
Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer's disease: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 135:112689. [DOI: 10.1016/j.msec.2022.112689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022]
|
8
|
Li H, Joo E, Lee JY. Theoretical Insights into Mutation and Histidine Tautomerism Effects on Tau Proteins. ACS Chem Neurosci 2021; 12:4361-4366. [PMID: 34735109 DOI: 10.1021/acschemneuro.1c00594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Research on misfolding of tau proteins will help to better understand the formation process of neurofibrillary tangles, a hallmark of Alzheimer's disease. Mutation and histidine tautomeric effects have been considered the two most important inherent factors for tau protein misfolding. In current research, replica-exchange molecular dynamics (REMD) were performed to characterize the structural properties of the key fragment R3 of tau protein under the collective effects of P332L mutation and histidine tautomerism. Simulation results suggest that though the content β-sheet of P332L R3 εδ isomer is slightly lower than that of the WT P332L R3 fragment, the total stable secondary structures including β-sheet and helix of P332L R3 isomers are generally more prevalent than those of wild type R3, which may be the reason that P332L R3 has a higher aggregation tendency. Further analysis showed that the hydrogen bond networks are affected by the mutation and histidine tautomerism. Furthermore, the interactions between N-terminus and C-terminus play a crucial role in β-hairpin formation in all isomers. The current study will contribute to revealing the collective effects of P332L and histidine tautomerism on the misfolding of tau proteins.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Eunjung Joo
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|