1
|
Dowling P, Swandulla D, Ohlendieck K. Mass Spectrometry-Based Proteomic Technology and Its Application to Study Skeletal Muscle Cell Biology. Cells 2023; 12:2560. [PMID: 37947638 PMCID: PMC10649384 DOI: 10.3390/cells12212560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Voluntary striated muscles are characterized by a highly complex and dynamic proteome that efficiently adapts to changed physiological demands or alters considerably during pathophysiological dysfunction. The skeletal muscle proteome has been extensively studied in relation to myogenesis, fiber type specification, muscle transitions, the effects of physical exercise, disuse atrophy, neuromuscular disorders, muscle co-morbidities and sarcopenia of old age. Since muscle tissue accounts for approximately 40% of body mass in humans, alterations in the skeletal muscle proteome have considerable influence on whole-body physiology. This review outlines the main bioanalytical avenues taken in the proteomic characterization of skeletal muscle tissues, including top-down proteomics focusing on the characterization of intact proteoforms and their post-translational modifications, bottom-up proteomics, which is a peptide-centric method concerned with the large-scale detection of proteins in complex mixtures, and subproteomics that examines the protein composition of distinct subcellular fractions. Mass spectrometric studies over the last two decades have decisively improved our general cell biological understanding of protein diversity and the heterogeneous composition of individual myofibers in skeletal muscles. This detailed proteomic knowledge can now be integrated with findings from other omics-type methodologies to establish a systems biological view of skeletal muscle function.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
2
|
Irrgeher J, Rampler E, Steininger-Mairinger T. Making waves in analytical chemistry. Anal Bioanal Chem 2022; 414:7335-7336. [PMID: 35974198 DOI: 10.1007/s00216-022-04273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Johanna Irrgeher
- Department of General, Analytical and Physical Chemistry, Chair of General and Analytical Chemistry, Montanuniversität Leoben, Franz-Josef-Straße 18, 8700, Leoben, Austria. .,Department of Physics and Astronomy, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Teresa Steininger-Mairinger
- Institute of Analytical Chemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna (BOKU), Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
3
|
Vizuet-de-Rueda JC, Montero-Vargas JM, Galván-Morales MÁ, Porras-Gutiérrez-de-Velasco R, Teran LM. Current Insights on the Impact of Proteomics in Respiratory Allergies. Int J Mol Sci 2022; 23:ijms23105703. [PMID: 35628512 PMCID: PMC9144092 DOI: 10.3390/ijms23105703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Respiratory allergies affect humans worldwide, causing extensive morbidity and mortality. They include allergic rhinitis (AR), asthma, pollen food allergy syndrome (PFAS), aspirin-exacerbated respiratory disease (AERD), and nasal polyps (NPs). The study of respiratory allergic diseases requires new technologies for early and accurate diagnosis and treatment. Omics technologies provide the tools required to investigate DNA, RNA, proteins, and other molecular determinants. These technologies include genomics, transcriptomics, proteomics, and metabolomics. However, proteomics is one of the main approaches to studying allergic disorders' pathophysiology. Proteins are used to indicate normal biological processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention. In this field, the principal goal of proteomics has been to discover new proteins and use them in precision medicine. Multiple technologies have been applied to proteomics, but that most used for identifying, quantifying, and profiling proteins is mass spectrometry (MS). Over the last few years, proteomics has enabled the establishment of several proteins for diagnosing and treating respiratory allergic diseases.
Collapse
|
4
|
Bu F, Cheng Q, Zhang Y, Zhang X, Yan K, Liu F, Li Z, Lu X, Ren Y, Liu S. Discovery of Missing Proteins from an Aneuploidy Cell Line Using a Proteogenomic Approach. J Proteome Res 2021; 20:5329-5339. [PMID: 34748338 DOI: 10.1021/acs.jproteome.1c00772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With the steadfast development of proteomic technology, the number of missing proteins (MPs) has been continuously shrinking, with approximately 1470 MPs that have not been explored yet. Due to this phenomenon, the discovery of MPs has been increasingly more difficult and elusive. In order to face this challenge, we have hypothesized that a stable aneuploid cell line with increased chromosomes serves as a useful material for assisting MP exploration. Ker-CT cell line with trisomy at chromosome 5 and 20 was selected for this purpose. With a combination strategy of RNA-Seq and LC-MS/MS, a total of 22 178 transcripts and 8846 proteins were identified in Ker-CT. Although the transcripts corresponding to 15 and 15 MP genes located at chromosome 5 and 20 were detected, none of the MPs were found in Ker-CT. Surprisingly, 3 MPs containing at least two unique non-nest peptides of length ≥9 amino acids were identified in Ker-CT, whose genes are located on chromosome 3 and 10, respectively. Furthermore, the 3 MPs were verified using the method of parallel reaction monitoring (PRM). These results suggest that the abnormal status of chromosomes may not only impact the expression of the corresponding genes in trisomy chromosomes, but also influence that of other chromosomes, which benefits MP discovery. The data obtained in this study are available via ProteomeXchange (PXD028647) and PeptideAtlas (PASS01700), respectively.
Collapse
Affiliation(s)
- Fanyu Bu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Qingqiu Cheng
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yuxing Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Xia Zhang
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Keqiang Yan
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| | - Frank Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Zelong Li
- Biological Resource Center of Plants, Animals and Microorganisms, China National Gene Bank, BGI-Shenzhen, Guangdong 518120, China
| | - Xiaomei Lu
- Clinical Laboratory Center of Dongguan Eighth People's Hospital, Dongguan 523325, China
| | - Yan Ren
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China
| | - Siqi Liu
- BGI-Shenzhen, Beishan Industrial Zone 11th Building, Yantian District, Shenzhen, Guangdong 518083, China.,Department of BGI Education, School of Life Sciences, University of Chinese Academy of Sciences, Shenzhen, Guangdong 518083, China
| |
Collapse
|
5
|
Overall CM. A Flickering Light at the End of the Pandemic Tunnel. J Proteome Res 2021; 20:5223-5226. [PMID: 34856807 DOI: 10.1021/acs.jproteome.1c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christopher M Overall
- Centre for Blood Research, Departments of Oral Biological & Medical Sciences, and Biochemistry & Molecular Biology, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
6
|
Yang Y, Hwang H, Im JE, Lee K, Bhoo SH, Yoo JS, Kim YH, Kim JY. Flashlight into the Function of Unannotated C11orf52 using Affinity Purification Mass Spectrometry. J Proteome Res 2021; 20:5340-5346. [PMID: 34739247 DOI: 10.1021/acs.jproteome.1c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For an enhanced understanding of the biological mechanisms of human disease, it is essential to investigate protein functions. In a previous study, we developed a prediction method of gene ontology (GO) terms by the I-TASSER/COFACTOR result, and we applied this to uPE1 in chromosome 11. Here, to validate the bioinformatics prediction of C11orf52, we utilized affinity purification and mass spectrometry to identify interacting partners of C11orf52. Using immunoprecipitation methods with three different peptide tags (Myc, Flag, and 2B8) in HEK 293T cell lines, we identified 79 candidate proteins that are expected to interact with C11orf52. The results of a pathway analysis of the GO and STRING database with candidate proteins showed that C11orf52 could be related to signaling receptor binding, cell-cell adhesion, and ribosome biogenesis. Then, we selected three partner candidates of DSG1, JUP, and PTPN11 for verification of the interaction with C11orf52 and confirmed them by colocalization at the cell-cell junctions by coimmunofluorescence experiments. On the basis of this study, we expect that C11orf52 is related to the Wnt signaling pathway via DSG1 from the protein-protein interactions, given the results of a comprehensive analysis of the bioinformatic predictions. The data set is available at the ProteomeXchange consortium via PRIDE repository (PXD026986).
Collapse
Affiliation(s)
- Yeji Yang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Heeyoun Hwang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| | - Ji Eun Im
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyungha Lee
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Seong Hee Bhoo
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jong Shin Yoo
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Hee Kim
- Division of Convergence Technology, Research Institute of National Cancer Center, Goyang 10408, Republic of Korea.,Department of Cancer Biomedical Science, The National Cancer Center Graduate School of Cancer Science and Policy, Goyang 10408, Republic of Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Republic of Korea
| |
Collapse
|