1
|
Guareschi EE, Nicholls PK, Tobe SS, Magni PA. Taphonomy and diagenesis of submerged bone: An experimental approach. Forensic Sci Int 2025; 370:112416. [PMID: 40054340 DOI: 10.1016/j.forsciint.2025.112416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 05/02/2025]
Abstract
Bone taphonomy and diagenesis contribute to anthropological analysis in forensic investigations by attempting to reconstruct the relationship between human cadaveric remains and their postmortem depositional environment. The rare aquatic taphonomic experiments have been delivering conflicting results on the influence of time and the environment on the decay of bone and teeth, especially considering that the main diagenetic processes can lead to fragmentation, progressive dissolution or fossilization. The aim of this experimental, quantitative, randomized and controlled 2-year study was to analyse the taphonomy and diagenesis of submerged terrestrial mammalian bones to achieve a more accurate estimation of both the post-mortem interval (PMI) and the post-mortem submersion interval (PMSI) in the short term. Three parameters of bone diagenesis, the Oxford Histological Index (OHI), the total porosity and the collagen content of cortical bone were analysed by MicroCT Scan, bright-field Light Microscopy (Picrosirius Red stain), Scanning Electron Microscopy (SEM) and Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on 75 sheep femurs and tibias placed in four distinct types of environment (natural saltwater, natural freshwater, an artificial seawater solution and exposed to the air) vs. non-exposed controls. LA-ICP-MS was soon discontinued because no measurable changes of the elemental profiles could be detected. Multivariate statistical analysis was applied to the collected data. The macroscopical preservation was consistently excellent (OHI=5). The total porosity and the degradation of collagen were greater underwater than in subaerial exposure, whereas demineralization zones and bioerosion tunnelling appeared after 12 months in the air-exposed samples only. Underwater, the continuous movement, the correlated abrasion by sand and sediment and the constant alkaline pH (≥ 8) can explain the progressive removal of the mineral component and the subsequent exposure of collagen to bioeroders and chemical hydrolysis. On land, the same process occurs at a slower rate on account of the seasonality of the water flow, however, the action of the more abundant and diversified species of bioeroding microorganisms appears more efficient. Despite some limitations, this study indicates that three parameters of bone diagenesis can predict the depositional environment of terrestrial mammalian bone characterized by a PMI and/or PMSI of at least 12 months.
Collapse
Affiliation(s)
- Edda E Guareschi
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia; Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Philip K Nicholls
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Shanan S Tobe
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Paola A Magni
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia; The UWA Oceans Institute and School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
2
|
Charlier P, Bourdin V, N'Dah D, Kielbasa M, Pible O, Armengaud J. Metaproteomic analysis of King Ghezo tomb wall (Abomey, Benin) confirms 19th century voodoo sacrifices. Proteomics 2024; 24:e2400048. [PMID: 38807532 DOI: 10.1002/pmic.202400048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
The palace of King Ghezo in Abomey, capital of the ancient kingdom of Dahomey (present-day Benin), houses two sacred huts which are specific funerary structures. It is claimed that the binder in their walls is made of human blood. In the study presented here, we conceived an original strategy to analyze the proteins present on minute amounts of the cladding sampled from the inner facade of the cenotaph wall and establish their origin. The extracted proteins were proteolyzed and the resulting peptides were characterized by high-resolution tandem mass spectrometry. Over 6397 distinct molecular entities were identified using cascading searches. Starting from without a priori searches of an extended generic database, the peptide repertoire was narrowed down to the most representative organisms-identified by means of taxon-specific peptides. A wide diversity of bacteria, fungi, plants, and animals were detected through the available protein material. This inventory was used to archaeologically reconstruct the voodoo rituals of consecration and maintenance of vitality. Several indicators attested to the presence of traces of human and poultry blood in the material taken. This study shows the essential advantages of paleoproteomics and metaproteomics for the study of ancient residues from archaeological excavations or historical monuments.
Collapse
Affiliation(s)
- Philippe Charlier
- Department of research and higher education, musée du quai Branly - Jacques Chirac, Paris, France
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ/Paris-Saclay University), Montigny-Le-Bretonneux, France
- Foundation Anthropology, Archaeology, Biology (FAAB) - Institut de France, Paris, France
| | - Virginie Bourdin
- Laboratory Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ/Paris-Saclay University), Montigny-Le-Bretonneux, France
| | - Didier N'Dah
- Département d'Histoire et d'Archéologie, Institut National des Métiers d'Art, d'Archéologie et de la Culture (INMAAC), Université d'Abomey-Calavi, Boite Postale 04 BP 431 Cotonou, République du Bénin
| | - Mélodie Kielbasa
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Olivier Pible
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SPI, Université Paris-Saclay, Bagnols-sur-Cèze, France
| |
Collapse
|
3
|
Végh EI, Douka K. SpecieScan: semi-automated taxonomic identification of bone collagen peptides from MALDI-ToF-MS. Bioinformatics 2024; 40:btae054. [PMID: 38337062 PMCID: PMC10918634 DOI: 10.1093/bioinformatics/btae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
MOTIVATION Zooarchaeology by Mass Spectrometry (ZooMS) is a palaeoproteomics method for the taxonomic determination of collagen, which traditionally involves challenging manual spectra analysis with limitations in quantitative results. As the ZooMS reference database expands, a faster and reproducible identification tool is necessary. Here we present SpecieScan, an open-access algorithm for automating taxa identification from raw MALDI-ToF mass spectrometry (MS) data. RESULTS SpecieScan was developed using R (pre-processing) and Python (automation). The algorithm's output includes identified peptide markers, closest matching taxonomic group (taxon, family, order), correlation scores with the reference databases, and contaminant peaks present in the spectra. Testing on original MS data from bones discovered at Palaeothic archaeological sites, including Denisova Cave in Russia, as well as using publicly-available, externally produced data, we achieved >90% accuracy at the genus-level and ∼92% accuracy at the family-level for mammalian bone collagen previously analysed manually. AVAILABILITY AND IMPLEMENTATION The SpecieScan algorithm, along with the raw data used in testing, results, reference database, and common contaminants lists are freely available on Github (https://github.com/mesve/SpecieScan).
Collapse
Affiliation(s)
- Emese I Végh
- Department of Evolutionary Anthropology, University of Vienna, University Biology Building, A-1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Archaeology, Environmental Changes, and Geochemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Katerina Douka
- Department of Evolutionary Anthropology, University of Vienna, University Biology Building, A-1030 Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Taniguchi K, Miyaguchi H. COL1A2 Barcoding: Bone Species Identification via Shotgun Proteomics. J Proteome Res 2024; 23:377-385. [PMID: 38091499 DOI: 10.1021/acs.jproteome.3c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Species identification of fragmentary bones remains a challenging task in archeology and forensics. A species identification method for such fragmentary bones that has recently attracted interest is the use of bone collagen proteins. Here, we describe a method similar to DNA barcoding that reads collagen protein sequences in bone and automatically determines the species by performing sequence database searches. The method is almost identical to conventional shotgun proteomics analysis of bone samples, except that the database used by the SEQUEST search engine consisted only of entries for collagen type 1 alpha 2 (COL1A2) proteins from various vertebrates. Accordingly, the COL1A2 peptides that differ in sequence among species act as species marker peptides. In SEQUEST-based shotgun proteomics, the protein entries that contain more marker peptide sequences are assigned higher scores; therefore, the highest-scoring protein entry will be the COL1A2 entry for the species from which the analyzed bone was derived. We tested our method using bone samples from 30 vertebrate species and found that all species were correctly identified. In conclusion, COL1A2 can be used as a bone protein barcode and can be read through shotgun proteomics, allowing for automatic bone species identification. Data are available via ProteomeXchange with the identifier PXD045402.
Collapse
Affiliation(s)
- Kei Taniguchi
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa 277-0882, Chiba, Japan
| | - Hajime Miyaguchi
- National Research Institute of Police Science, 6-3-1, Kashiwanoha, Kashiwa 277-0882, Chiba, Japan
| |
Collapse
|
5
|
Abstract
Paleoproteomics, the study of ancient proteins, is a rapidly growing field at the intersection of molecular biology, paleontology, archaeology, paleoecology, and history. Paleoproteomics research leverages the longevity and diversity of proteins to explore fundamental questions about the past. While its origins predate the characterization of DNA, it was only with the advent of soft ionization mass spectrometry that the study of ancient proteins became truly feasible. Technological gains over the past 20 years have allowed increasing opportunities to better understand preservation, degradation, and recovery of the rich bioarchive of ancient proteins found in the archaeological and paleontological records. Growing from a handful of studies in the 1990s on individual highly abundant ancient proteins, paleoproteomics today is an expanding field with diverse applications ranging from the taxonomic identification of highly fragmented bones and shells and the phylogenetic resolution of extinct species to the exploration of past cuisines from dental calculus and pottery food crusts and the characterization of past diseases. More broadly, these studies have opened new doors in understanding past human-animal interactions, the reconstruction of past environments and environmental changes, the expansion of the hominin fossil record through large scale screening of nondiagnostic bone fragments, and the phylogenetic resolution of the vertebrate fossil record. Even with these advances, much of the ancient proteomic record still remains unexplored. Here we provide an overview of the history of the field, a summary of the major methods and applications currently in use, and a critical evaluation of current challenges. We conclude by looking to the future, for which innovative solutions and emerging technology will play an important role in enabling us to access the still unexplored "dark" proteome, allowing for a fuller understanding of the role ancient proteins can play in the interpretation of the past.
Collapse
Affiliation(s)
- Christina Warinner
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Kristine Korzow Richter
- Department
of Anthropology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew J. Collins
- Department
of Archaeology, Cambridge University, Cambridge CB2 3DZ, United Kingdom
- Section
for Evolutionary Genomics, Globe Institute,
University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
6
|
Abstract
Collagen peptide mass fingerprinting by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, also known as zooarchaeology by mass spectrometry (ZooMS), is a rapidly growing analytical technique in the fields of archaeology, ecology, and cultural heritage. Minimally destructive and cost effective, ZooMS enables rapid taxonomic identification of large bone assemblages, cultural heritage objects, and other organic materials of animal origin. As its importance grows as both a research and a conservation tool, it is critical to ensure that its expanding body of users understands its fundamental principles, strengths, and limitations. Here, we outline the basic functionality of ZooMS and provide guidance on interpreting collagen spectra from archaeological bones. We further examine the growing potential of applying ZooMS to nonmammalian assemblages, discuss available options for minimally and nondestructive analyses, and explore the potential for peptide mass fingerprinting to be expanded to noncollagenous proteins. We describe the current limitations of the method regarding accessibility, and we propose solutions for the future. Finally, we review the explosive growth of ZooMS over the past decade and highlight the remarkably diverse applications for which the technique is suited.
Collapse
|
7
|
Bonicelli A, Di Nunzio A, Di Nunzio C, Procopio N. Insights into the Differential Preservation of Bone Proteomes in Inhumed and Entombed Cadavers from Italian Forensic Caseworks. J Proteome Res 2022; 21:1285-1298. [PMID: 35316604 PMCID: PMC9087355 DOI: 10.1021/acs.jproteome.1c00904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 01/30/2023]
Abstract
Bone is a hard biological tissue and a precious reservoir of information in forensic investigations as it retains key biomolecules commonly used for identification purposes. Bone proteins have recently attracted significant interest for their potential in estimating post-mortem interval (PMI) and age at death (AAD). However, the preservation of such proteins is highly dependent on intrinsic and extrinsic factors that can hinder the potential application of molecular techniques to forensic sciences. The present study aims at investigating the effects that two commonly used types of burial practices (entombment and inhumation) have on bone protein survival. The sample consists of 14 exhumed individuals from cemeteries in Southern Italy with different AADs (29-85 years) and PMIs (1-37 years). LC-MS/MS analyses show that 16 proteins are better preserved under the entombed conditions and 4 proteins are better preserved under the inhumed conditions, whereas no clear differences are detected for post-translational protein modifications. Furthermore, several potential "stable" protein markers (i.e., proteins not affected by the burial environment) are identified for PMI and AAD estimation. Overall, these results show that the two burial environments play a role in the differential preservation of noncollagenous proteins, confirming the potential of LC-MS/MS-based proteomics in forensic sciences.
Collapse
Affiliation(s)
- Andrea Bonicelli
- Forensic
Science Research Group, Faculty of Health and Life Sciences, Applied
Sciences, Northumbria University, NE1 8ST Newcastle
Upon Tyne, United Kingdom
| | - Aldo Di Nunzio
- Chemical
Sciences Department, University of Naples
Federico II, 80126 Naples, Italy
| | - Ciro Di Nunzio
- Legal
Medicine Department, University of Catanzaro
Magna Graecia, 88100 Germaneto, Italy
| | - Noemi Procopio
- Forensic
Science Research Group, Faculty of Health and Life Sciences, Applied
Sciences, Northumbria University, NE1 8ST Newcastle
Upon Tyne, United Kingdom
| |
Collapse
|