1
|
Cui Q, Qin N, Zhang Y, Miao Y, Xie L, Ma X, Zhang Z, Xie P. Neuroprotective effects of annexin A1 tripeptide in rats with sepsis-associated encephalopathy. Biotechnol Appl Biochem 2024; 71:701-711. [PMID: 38409880 DOI: 10.1002/bab.2569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is characterized by high incidence and mortality rates, with limited treatment options available. The underlying mechanisms and pathogenesis of SAE remain unclear. Annexin A1 (ANXA1), a membrane-associated protein, is involved in various in vivo pathophysiological processes. This study aimed to explore the neuroprotective effects and mechanisms of a novel bioactive ANXA1 tripeptide (ANXA1sp) in SAE. Forty Sprague-Dawley rats were randomly divided into four groups (n = 10 each): control, SAE (intraperitoneal injection of lipopolysaccharide), vehicle (SAE + normal saline), and ANXA1sp (SAE + ANXA1sp) groups. Changes in serum inflammatory factors (interleukin-6 [IL-6], tumor necrosis factor-α [TNF-α]), hippocampal reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and adenosine triphosphate (ATP) levels were measured. The Morris water maze and Y maze tests were used to assess learning and memory capabilities in the rats. Further, changes in peroxisome proliferator-activated receptor-gamma (PPAR-γ) and apoptosis-related protein expression were detected using western blot. The IL-6, TNF-α, and ROS levels were significantly increased in the SAE group compared with the levels in the control group. Intraperitoneal administration of ANXA1sp led to a significant decrease in the IL-6, TNF-α, and ROS levels (p < 0.05). Compared with the SAE group, the ANXA1sp group exhibited reduced escape latency on day 5, a significant increase in the number of platform crossings and the percent spontaneous alternation, and significantly higher hippocampal MMP and ATP levels (p < 0.05). Meanwhile, the expression level of PPAR-γ protein in the ANXA1sp group was significantly increased compared with that in the other groups (p < 0.05). The expressions of apoptosis-related proteins (nuclear factor-kappa B [NF-κB], Bax, and Caspase-3) in the SAE and vehicle groups were significantly increased, with a noticeable decrease in Bcl-2 expression, compared with that noted in the control group. Moreover, the expressions of NF-κB, Bax, and Caspase-3 were significantly decreased in the ANXA1sp group, and the expression of Bcl-2 was markedly increased (p < 0.05). ANXA1sp can effectively reverse cognitive impairment in rats with SAE. The neuroprotective effect of ANXA1sp may be attributed to the activation of the PPAR-γ pathway, resulting in reduced neuroinflammatory response and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qiao Cui
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Nannan Qin
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yonghan Zhang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| |
Collapse
|
2
|
Parey E, Fernandez-Aroca D, Frost S, Uribarren A, Park TJ, Zöttl M, St John Smith E, Berthelot C, Villar D. Phylogenetic modeling of enhancer shifts in African mole-rats reveals regulatory changes associated with tissue-specific traits. Genome Res 2023; 33:1513-1526. [PMID: 37625847 PMCID: PMC10620049 DOI: 10.1101/gr.277715.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/24/2023] [Indexed: 08/27/2023]
Abstract
Changes in gene regulation are thought to underlie most phenotypic differences between species. For subterranean rodents such as the naked mole-rat, proposed phenotypic adaptations include hypoxia tolerance, metabolic changes, and cancer resistance. However, it is largely unknown what regulatory changes may associate with these phenotypic traits, and whether these are unique to the naked mole-rat, the mole-rat clade, or are also present in other mammals. Here, we investigate regulatory evolution in the heart and liver from two African mole-rat species and two rodent outgroups using genome-wide epigenomic profiling. First, we adapted and applied a phylogenetic modeling approach to quantitatively compare epigenomic signals at orthologous regulatory elements and identified thousands of promoter and enhancer regions with differential epigenomic activity in mole-rats. These elements associate with known mole-rat adaptations in metabolic and functional pathways and suggest candidate genetic loci that may underlie mole-rat innovations. Second, we evaluated ancestral and species-specific regulatory changes in the study phylogeny and report several candidate pathways experiencing stepwise remodeling during the evolution of mole-rats, such as the insulin and hypoxia response pathways. Third, we report nonorthologous regulatory elements overlap with lineage-specific repetitive elements and appear to modify metabolic pathways by rewiring of HNF4 and RAR/RXR transcription factor binding sites in mole-rats. These comparative analyses reveal how mole-rat regulatory evolution informs previously reported phenotypic adaptations. Moreover, the phylogenetic modeling framework we propose here improves upon the state of the art by addressing known limitations of inter-species comparisons of epigenomic profiles and has broad implications in the field of comparative functional genomics.
Collapse
Affiliation(s)
- Elise Parey
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Diego Fernandez-Aroca
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Stephanie Frost
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Ainhoa Uribarren
- Cambridge Institute, Cancer Research UK and University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Thomas J Park
- Department of Biological Sciences and Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Markus Zöttl
- Department of Biology and Environmental Science, Linnaeus University, 44054 Kalmar, Sweden
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom
| | - Camille Berthelot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France;
- Institut Pasteur, Université Paris Cité, CNRS UMR 3525, INSERM UA12, Comparative Functional Genomics Group, F-75015 Paris, France
| | - Diego Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom;
| |
Collapse
|
3
|
Zhao Y, Zhao H, Xu H, An P, Ma B, Lu H, Zhou Q, Li X, Xiong Y. Perfluorooctane sulfonate exposure induces preeclampsia-like syndromes by damaging trophoblast mitochondria in pregnant mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114256. [PMID: 36327784 DOI: 10.1016/j.ecoenv.2022.114256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Preeclampsia, defined as a hypertensive disorder during pregnancy, is a major cause of maternal and fetal mortality. Observational studies have shown that the exposure of per- and polyfluoroalkyl substances, such as perfluorooctane sulfonate (PFOS), is emerging as a significant environmental factor associated with preeclampsia risk. However, epidemiologic evidence is of correlative in nature, and unable to establish a causal relationship. Here, we established an animal model of PFOS-induced preeclampsia to explore the molecular mechanism of PFOS in placental trophoblast. In the mouse model, PFOS exposure by gavage at a dose of 10 mg/kg/d from embryonic day 7.5-16.5 was sufficient to induce preeclampsia-like symptoms such as hypertension, proteinuria, and renal glomerular endotheliosis, accompanied with placental abnormal stromal collagen deposition. In-vitro experiments of JEG-3 cells, PFOS exposure impaired trophoblast motility including the compromised abilities of migration, invasion and vascularization. Mechanistically, these pathological effects on cells resulted from SLC25A5-mediated mitochondrial damages, characterized by excessive ROS generation, decreased ATP production and mitochondrial membrane potential loss, and accompanied by the activation of p38 MAPK and JNK signaling pathways. This pioneering study provided biological plausibility to the causality verified by the animal model and the in vitro experiments, which indicates that PFOS exposure may cause preeclampsia during pregnancy via impairing trophoblast mitochondria.
Collapse
Affiliation(s)
- Ying Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Huanqiang Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Huangfang Xu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Ping An
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Bo Ma
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Huiqing Lu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China
| | - Xiaotian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China.
| | - Yu Xiong
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200090, China.
| |
Collapse
|
4
|
Bergsten TM, Levy SE, Zink KE, Lusk HJ, Pergande MR, Cologna SM, Burdette JE, Sanchez LM. Fallopian tube secreted protein affects ovarian metabolites in high grade serous ovarian cancer. Front Cell Dev Biol 2022; 10:1042734. [PMID: 36420136 PMCID: PMC9676663 DOI: 10.3389/fcell.2022.1042734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
High grade serous ovarian cancer (HGSOC), the most lethal histotype of ovarian cancer, frequently arises from fallopian tube epithelial cells (FTE). Once transformed, tumorigenic FTE often migrate specifically to the ovary, completing the crucial primary metastatic step and allowing the formation of the ovarian tumors after which HGSOC was originally named. As only the fimbriated distal ends of the fallopian tube that reside in close proximity to the ovary develop precursor lesions such as serous tubal intraepithelial carcinomas, this suggests that the process of transformation and primary metastasis to the ovary is impacted by the local microenvironment. We hypothesize that chemical cues, including small molecules and proteins, may help stimulate the migration of tumorigenic FTE to the ovary. However, the specific mediators of this process are still poorly understood, despite a recent growth in interest in the tumor microenvironment. Our previous work utilized imaging mass spectrometry (IMS) to identify the release of norepinephrine (NE) from the ovary in co-cultures of tumorigenic FTE cells with an ovarian explant. We predicted that tumorigenic FTE cells secreted a biomolecule, not produced or produced with low expression by non-tumorigenic cells, that stimulated the ovary to release NE. As such, we utilized an IMS mass-guided bioassay, using NE release as our biological marker, and bottom-up proteomics to demonstrate that a secreted protein, SPARC, is a factor produced by tumorigenic FTE responsible for enhancing release of ovarian NE and influencing primary metastasis of HGSOC. This discovery highlights the bidirectional interplay between different types of biomolecules in the fallopian tube and ovarian microenvironment and their combined roles in primary metastasis and disease progression.
Collapse
Affiliation(s)
- Tova M. Bergsten
- Burdette Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Sarah E. Levy
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States
| | - Katherine E. Zink
- Sanchez Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Hannah J. Lusk
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States
| | - Melissa R. Pergande
- Cologna Lab, University of Illinois Chicago, Department of Chemistry, Chicago, IL, United States
| | - Stephanie M. Cologna
- Cologna Lab, University of Illinois Chicago, Department of Chemistry, Chicago, IL, United States
| | - Joanna E. Burdette
- Burdette Lab, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States,*Correspondence: Joanna E. Burdette, ; Laura M. Sanchez,
| | - Laura M. Sanchez
- Sanchez Lab, University of California, Santa Cruz, Department of Chemistry and Biochemistry, Santa Cruz, CA, United States,*Correspondence: Joanna E. Burdette, ; Laura M. Sanchez,
| |
Collapse
|