1
|
Sponseller B, Evans T. Plants Causing Toxic Myopathies. Vet Clin North Am Equine Pract 2024; 40:45-59. [PMID: 38151404 DOI: 10.1016/j.cveq.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023] Open
Abstract
Boxelder and sycamore maple contain hypoglycin A (HGA), the toxic metabolite of which, MCPA-CoA, inhibits fatty acid β-oxidation, causing seasonal pasture myopathy (SPM) or atypical myopathy (AM), respectively. White snakeroot and rayless goldenrod contain multiple benzofuran ketones (BFKs). The identity/toxicity of BFKs appear variable, possibly involving interactions between toxins/toxic metabolites, but ultimately inhibit cellular energy metabolism. Unthrifty horses grazing sparse pastures during the fall appear predisposed to these plant-associated, frequently fatal, toxic myopathies. Toxidromes are characterized by varying degrees of rhabdomyolysis and cardiac myonecrosis, with plant toxins remaining toxic in hay and being excreted in milk.
Collapse
Affiliation(s)
- Beatrice Sponseller
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, 1809 South Riverside Drive, Ames, IA 50011, USA.
| | - Tim Evans
- Department of Biomedical Sciences, College of Veterinary Medicine and MU Extension, University of Missouri, W226 Veterinary Medicine Building, 1520 East Rollins Street, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Bonhomme MM, Patarin F, Kruse CJ, François AC, Renaud B, Couroucé A, Leleu C, Boemer F, Toquet MP, Richard EA, Seignot J, Wouters CP, Votion DM. Untargeted Metabolomics Profiling Reveals Exercise Intensity-Dependent Alterations in Thoroughbred Racehorses' Plasma after Routine Conditioning Sessions. ACS OMEGA 2023; 8:48557-48571. [PMID: 38144146 PMCID: PMC10733985 DOI: 10.1021/acsomega.3c08583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/26/2023]
Abstract
Thoroughbred (TB) racehorses undergo rigorous conditioning programs to optimize their physical and mental capabilities through varied exercise sessions. While conventional investigations focus on limited hematological and biochemical parameters, this field study employed untargeted metabolomics to comprehensively assess metabolic responses triggered by exercise sessions routinely used in TB conditioning. Blood samples were collected pre- and post-exercise from ten racehorses, divided into two groups based on exercise intensity: high intensity (n = 6, gallop at ± 13.38 m/s, 1400 m) and moderate intensity (n = 4, soft canter at ± 7.63 m/s, 2500 m). Intensity was evaluated through monitoring of the speed, heart rate, and lactatemia. Resting and 30 min post-exercise plasma samples were analyzed using ultraperformance liquid chromatography coupled with high-resolution mass spectrometry. Unsupervised principal component analysis revealed exercise-induced metabolome changes, with high-intensity exercise inducing greater alterations. Following high-intensity exercise, 54 metabolites related to amino acid, fatty acid, nucleic acid, and vitamin metabolism were altered versus 23 metabolites, primarily linked to fatty acid and amino acid metabolism, following moderate-intensity exercise. Metabolomics confirmed energy metabolism changes reported by traditional biochemistry studies and highlighted the involvement of lipid and amino acid metabolism during routine exercise and recovery, aspects that had previously been overlooked in TB racehorses.
Collapse
Affiliation(s)
- Maëlle M. Bonhomme
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Florence Patarin
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Caroline-J. Kruse
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Anne-Christine François
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Benoît Renaud
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Anne Couroucé
- Equine
Department, Oniris, National Vet School
of Nantes, 101 Route
de Gachet, 44300 Nantes, France
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
| | - Claire Leleu
- Equi-Test, La Lande, 53290 Grez-en-Bouère, France
| | - François Boemer
- Biochemical
Genetics Laboratory, Human Genetics Department, University Hospital
of Liege, University of Liege, Avenue de l’Hôpital
1, 4000 Liège, Belgium
| | - Marie-Pierre Toquet
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
- LABÉO
(Frank Duncombe), 1 Route
de Rosel, 14280 Saint-Contest, France
| | - Eric A. Richard
- UR 7450
Biotargen, University of Caen Normandie, 3 Rue Nelson Mandela, 14280 Saint-Contest, France
- LABÉO
(Frank Duncombe), 1 Route
de Rosel, 14280 Saint-Contest, France
| | - Jérôme Seignot
- Clinique
Vétérinaire du Parc, 1 Avenue Malesherbes, 78600 Maisons-Laffitte, France
| | - Clovis P. Wouters
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| | - Dominique-Marie Votion
- Department
of Functional Sciences, Comparative Veterinary Medicine, Fundamental
and Applied Research for Animals & Health (FARAH), Faculty of
Veterinary Medicine, University of Liege, Boulevard de Colonster 20, 4000 Liège, Belgium
| |
Collapse
|
3
|
Meng S, Zhang Y, Lv S, Zhang Z, Liu X, Jiang L. Comparison of muscle metabolomics between two Chinese horse breeds. Front Vet Sci 2023; 10:1162953. [PMID: 37215482 PMCID: PMC10196265 DOI: 10.3389/fvets.2023.1162953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
With their enormous muscle mass and athletic ability, horses are well-positioned as model organisms for understanding muscle metabolism. There are two different types of horse breeds-Guanzhong (GZ) horses, an athletic breed with a larger body height (~148.7 cm), and the Ningqiang pony (NQ) horses, a lower height breed generally used for ornamental purposes-both inhabited in the same region of China with obvious differences in muscle content. The main objective of this study was to evaluate the breed-specific mechanisms controlling muscle metabolism. In this study, we observed muscle glycogen, enzyme activities, and LC-MS/MS untargeted metabolomics in the gluteus medius muscle of six, each of GZ and NQ horses, to explore differentiated metabolites that are related to the development of two muscles. As expected, the glycogen content, citrate synthase, and hexokinase activity of muscle were significantly higher in GZ horses. To alleviate the false positive rate, we used both MS1 and MS2 ions for metabolite classification and differential analysis. As a result, a total of 51,535 MS1 and 541 MS2 metabolites were identified, and these metabolites can separate these two groups from each other. Notably, 40% of these metabolites were clustered into lipids and lipid-like molecules. Furthermore, 13 significant metabolites were differentially detected between GZ and NQ horses (fold change [FC] value ≥ 2, variable important in projection value ≥1, and Q value ≤ 0.05). They are primarily clustered into glutathione metabolism (GSH, p = 0.01), taurine, and hypotaurine metabolism (p < 0.05) pathways. Seven of the 13 metabolites were also found in thoroughbred racing horses, suggesting that metabolites related to antioxidants, amino acids, and lipids played a key role in the development of skeleton muscle in horses. Those metabolites related to muscle development shed a light on racing horses' routine maintenance and improvement of athletic performance.
Collapse
Affiliation(s)
- Sihan Meng
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yanli Zhang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shipeng Lv
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Zhengkai Zhang
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Xuexue Liu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Centre d'Anthropobiologie et de Génomique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Lin Jiang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|