1
|
Ruiz-Sobremazas D, Abreu AC, Prados-Pardo Á, Martín-González E, Tristán AI, Fernández I, Moreno M, Mora S. From Nutritional Patterns to Behavior: High-Fat Diet Influences on Inhibitory Control, Brain Gene Expression, and Metabolomics in Rats. ACS Chem Neurosci 2024; 15:4369-4382. [PMID: 39607956 PMCID: PMC11660154 DOI: 10.1021/acschemneuro.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Impulsive and compulsive behaviors are associated with inhibitory control deficits. Diet plays a pivotal role in normal development, impacting both physiology and behavior. However, the specific effects of a high-fat diet (HFD) on inhibitory control have not received adequate attention. This study aimed to explore how exposure to a HFD from postnatal day (PND) 33 to PND77 affects impulsive and compulsive behaviors. The experiment involved 40 Wistar rats subjected to HFD or chow diets. Several tasks were employed to assess behavior, including variable delay to signal (VDS), five choice serial reaction time task (5-CSRTT), delay discounting task (DDT), and rodent gambling task (rGT). Genetic analyses were performed on the frontal cortex, and metabolomics and fatty acid profiles were examined by using stool samples collected on PND298. Our results showed that the HFD group exhibited increased motor impulsive behaviors while not affecting cognitive impulsivity. Surprisingly, reduced impulsive decision-making was shown in the HFD group. Furthermore, abnormal brain plasticity and dopamine gene regulation were shown in the frontal cortex, while metabolomics revealed abnormal fatty acid levels.
Collapse
Affiliation(s)
- Diego Ruiz-Sobremazas
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
- Department
of Psychology and Sociology, University
of Zaragoza, Crta. Atarazana
4, Teruel 44003, Spain
| | - Ana Cristina Abreu
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Ángeles Prados-Pardo
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Elena Martín-González
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Ana Isabel Tristán
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Ignacio Fernández
- Department
of Chemistry and Physics, Research Center CIAIMBITAL, University of Almería, Crta. Sacramento s/n, La Cañada de
San Urbano 04120, Spain
| | - Margarita Moreno
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
| | - Santiago Mora
- Center
for Welfare and Social Inclusion of the University of Almeria, Crta. Sacramento s/n, La Cañada de San Urbano 04120, Spain
- Current:
School of Psychology and Neuroscience, University
of St. Andrews, St Mary’s
Quad, South St., St Andrews KY16 9JP, United Kingdom
| |
Collapse
|
2
|
Fisher AL, Arora K, Maehashi S, Schweitzer D, Akefe IO. Unveiling the neurolipidome of obsessive-compulsive disorder: A scoping review navigating future diagnostic and therapeutic applications. Neurosci Biobehav Rev 2024; 166:105885. [PMID: 39265965 DOI: 10.1016/j.neubiorev.2024.105885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Obsessive-Compulsive Disorder (OCD) poses a multifaceted challenge in psychiatry, with various subtypes and severities greatly impacting well-being. Recent scientific attention has turned towards lipid metabolism, particularly the neurolipidome, in response to clinical demands for cost-effective diagnostics and therapies. This scoping review integrates recent animal, translational, and clinical studies to explore impaired neurolipid metabolism mechanisms in OCD's pathogenesis, aiming to enhance future diagnostics and therapeutics. Five key neurolipids - endocannabinoids, lipid peroxidation, phospholipids, cholesterol, and fatty acids - were identified as relevant. While the endocannabinoid system shows promise in animal models, its clinical application remains limited. Conversely, lipid peroxidation and disruptions in phospholipid metabolism exhibit significant impacts on OCD's pathophysiology based on robust clinical data. However, the role of cholesterol and fatty acids remains inconclusive. The review emphasises the importance of translational research in linking preclinical findings to real-world applications, highlighting the potential of the neurolipidome as a potential biomarker for OCD detection and monitoring. Further research is essential for advancing OCD understanding and treatment modalities.
Collapse
Affiliation(s)
- Andre Lara Fisher
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
| | - Kabir Arora
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Saki Maehashi
- Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | - Isaac Oluwatobi Akefe
- CDU Menzies School of Medicine, Charles Darwin University, Ellengowan Drive, Darwin, NT 0909, Australia.
| |
Collapse
|
3
|
Bordeaux ZA, Reddy SV, Ma EZ, Cornman H, Pritchard T, Marani M, Lu W, Guo S, Zhang C, Khare P, Le A, Kwatra MM, Kwatra SG. Excoriation Disorder Is Characterized by Systemic Glutamatergic Dysfunction. J Invest Dermatol 2024; 144:2085-2089.e1. [PMID: 38447865 DOI: 10.1016/j.jid.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/27/2024] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Affiliation(s)
- Zachary A Bordeaux
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sriya V Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emily Z Ma
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hannah Cornman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Thomas Pritchard
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melika Marani
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Weiying Lu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shenghao Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pratik Khare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of CheBE, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madan M Kwatra
- Department of Anesthesiology, Duke University School of Medicine, Durham, North Carolina, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Vreeland A, Calaprice D, Or-Geva N, Frye RE, Agalliu D, Lachman HM, Pittenger C, Pallanti S, Williams K, Ma M, Thienemann M, Gagliano A, Mellins E, Frankovich J. Postinfectious Inflammation, Autoimmunity, and Obsessive-Compulsive Disorder: Sydenham Chorea, Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal Infection, and Pediatric Acute-Onset Neuropsychiatric Disorder. Dev Neurosci 2023; 45:361-374. [PMID: 37742615 DOI: 10.1159/000534261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
Postinfectious neuroinflammation has been implicated in multiple models of acute-onset obsessive-compulsive disorder including Sydenham chorea (SC), pediatric acute-onset neuropsychiatric syndrome (PANS), and pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection (PANDAS). These conditions are associated with a range of autoantibodies which are thought to be triggered by infections, most notably group A streptococci (GAS). Based on animal models using huma sera, these autoantibodies are thought to cross-react with neural antigens in the basal ganglia and modulate neuronal activity and behavior. As is true for many childhood neuroinflammatory diseases and rheumatological diseases, SC, PANS, and PANDAS lack clinically available, rigorous diagnostic biomarkers and randomized clinical trials. In this review article, we outline the accumulating evidence supporting the role neuroinflammation plays in these disorders. We describe work with animal models including patient-derived anti-neuronal autoantibodies, and we outline imaging studies that show alterations in the basal ganglia. In addition, we present research on metabolites, which are helpful in deciphering functional phenotypes, and on the implication of sleep in these disorders. Finally, we encourage future researchers to collaborate across medical specialties (e.g., pediatrics, psychiatry, rheumatology, immunology, and infectious disease) in order to further research on clinical syndromes presenting with neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Allison Vreeland
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
| | | | - Noga Or-Geva
- Interdepartmental Program in Immunology, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, California, USA
| | - Richard E Frye
- Autism Discovery and Treatment Foundation, Phoenix, Arizona, USA
| | - Dritan Agalliu
- Department of Neurology, Pathology and Cell Biology, Columbia University Irving School of Medicine, New York, New York, USA
| | - Herbert M Lachman
- Departments of Psychiatry, Medicine, Genetics, and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Christopher Pittenger
- Departments of Psychiatry and Psychology, Child Study Center and Center for Brain and Mind Health, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Kyle Williams
- Department of Psychiatry Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Meiqian Ma
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| | - Margo Thienemann
- Division of Child and Adolescent Psychiatry and Child Development, Department of Psychiatry, Stanford University School of Medicine, Palo Alto, California, USA
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
| | - Antonella Gagliano
- Division of Child Neurology and Psychiatry, Pediatric Department of Policlinico G. Matino, University of Messina, Messina, Italy
| | - Elizabeth Mellins
- Department of Pediatrics, Program in Immunology, Stanford University School of Medicine, Palo Alto, California, USA
| | - Jennifer Frankovich
- Stanford Children's Health, PANS Clinic and Research Program, Stanford University School of Medicine, Palo Alto, California, USA
- Division of Pediatric Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, California, USA
| |
Collapse
|
5
|
Martín-González E, Olmedo-Córdoba M, Flores P, Moreno-Montoya M. Differential Neurobiological Markers in Phenotype-stratified Rats Modeling High or Low Vulnerability to Compulsive Behavior: A Narrative Review. Curr Neuropharmacol 2023; 21:1924-1933. [PMID: 36411566 PMCID: PMC10514532 DOI: 10.2174/1570159x21666221121091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Compulsivity is a key manifestation of inhibitory control deficit and a cardinal symptom in different neuropsychopathological disorders such as obsessive-compulsive disorder, schizophrenia, addiction, and attention-deficit hyperactivity disorder. Schedule-induced polydipsia (SIP), is an animal model to study compulsivity. In this procedure, rodents develop excessive and persistent drinking behavior under different food-reinforcement schedules, that are not related to homeostatic or regulatory requirements. However, there are important individual differences that support the role of high-drinker HD rats as a compulsive phenotype, characterized in different paradigms by inhibitory response deficit, cognitive inflexibility, and resistant to extinction behavior; with significant differences in response to pharmacological challenges, and relevant neurobiological alterations in comparison with the control group, the non-compulsive low drinker LD group on SIP. The purpose of this review is to collate and update the main findings on the neurobiological bases of compulsivity using the SIP model. Specifically, we reviewed preclinical studies on SIP, that have assessed the effects of serotonergic, dopaminergic, and glutamatergic drugs; leading to the description of the neurobiological markers, such as the key role of the serotonin 5-HT2A receptor and glutamatergic signaling in a phenotype vulnerable to compulsivity as high drinker HD rats selected by SIP. The review of the main findings of HD rats on SIP helps in the characterization of the preclinical compulsive phenotype, disentangles the underlying neurobiological, and points toward genetic hallmarks concerning the vulnerability to compulsivity.
Collapse
Affiliation(s)
- Elena Martín-González
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Manuela Olmedo-Córdoba
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Pilar Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| | - Margarita Moreno-Montoya
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Almeria, Spain
| |
Collapse
|