1
|
McCraw AJ, Palhares LCGF, Hendel JL, Gardner RA, Santaolalla A, Crescioli S, McDonnell J, Van Hemelrijck M, Chenoweth A, Spencer DIR, Wagner GK, Karagiannis SN. IgE glycosylation and impact on structure and function: A systematic review. Allergy 2024; 79:2625-2661. [PMID: 39099223 DOI: 10.1111/all.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
The impact of human IgE glycosylation on structure, function and disease mechanisms is not fully elucidated, and heterogeneity in different studies renders drawing conclusions challenging. Previous reviews discussed IgE glycosylation focusing on specific topics such as health versus disease, FcεR binding or impact on function. We present the first systematic review of human IgE glycosylation conducted utilizing the PRISMA guidelines. We sought to define the current consensus concerning the roles of glycosylation on structure, biology and disease. Despite diverse analytical methodologies, source, expression systems and the sparsity of data on IgE antibodies from non-allergic individuals, collectively evidence suggests differential glycosylation profiles, particularly in allergic diseases compared with healthy states, and indicates functional impact, and contributions to IgE-mediated hypersensitivities and atopic diseases. Beyond allergic diseases, dysregulated terminal glycan structures, including sialic acid, may regulate IgE metabolism. Glycan sites such as N394 may contribute to stabilizing IgE structure, with alterations in these glycans likely influencing both structure and IgE-FcεR interactions. This systematic review therefore highlights critical IgE glycosylation attributes in health and disease that may be exploitable for therapeutic intervention, and the need for novel analytics to explore pertinent research avenues.
Collapse
Affiliation(s)
- Alexandra J McCraw
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Lais C G F Palhares
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - Jenifer L Hendel
- Department of Chemistry, Trent University, Peterborough, Ontario, Canada
| | | | - Aida Santaolalla
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Silvia Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
| | - James McDonnell
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London, UK
| | - Mieke Van Hemelrijck
- Translational Oncology & Urology Research (TOUR), School of Cancer and Pharmaceutical Sciences, King's College, London, UK
| | - Alicia Chenoweth
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, UK
| | | | - Gerd K Wagner
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, Belfast, UK
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences & KHP Centre for Translational Medicine, Guy's Hospital, King's College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy's Cancer Centre, King's College London, London, UK
| |
Collapse
|
2
|
Balbisi M, Sugár S, Turiák L. Protein glycosylation in lung cancer from a mass spectrometry perspective. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38576136 DOI: 10.1002/mas.21882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/27/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Lung cancer is a severe disease for which better diagnostic and therapeutic approaches are urgently needed. Increasing evidence implies that aberrant protein glycosylation plays a crucial role in the pathogenesis and progression of lung cancer. Differences in glycosylation patterns have been previously observed between healthy and cancerous samples as well as between different lung cancer subtypes, which suggests untapped diagnostic potential. In addition, understanding the changes mediated by glycosylation may shed light on possible novel therapeutic targets and personalized treatment strategies for lung cancer patients. Mass spectrometry based glycomics and glycoproteomics have emerged as powerful tools for in-depth characterization of changes in protein glycosylation, providing valuable insights into the molecular basis of lung cancer. This paper reviews the literature on the analysis of protein glycosylation in lung cancer using mass spectrometry, which is dominated by manuscripts published over the past 5 years. Studies analyzing N-glycosylation, O-glycosylation, and glycosaminoglycan patterns in tissue, serum, plasma, and rare biological samples of lung cancer patients are highlighted. The current knowledge on the potential utility of glycan and glycoprotein biomarkers is also discussed.
Collapse
Affiliation(s)
- Mirjam Balbisi
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Simon Sugár
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Lilla Turiák
- MTA-TTK Lendület (Momentum) Glycan Biomarker Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|