1
|
Fulcher JM, Ives AN, Tasaki S, Kelly SS, Williams SM, Fillmore TL, Zhou M, Moore RJ, Qian WJ, Paša-Tolić L, Yu L, Oveisgharan S, Bennett DA, De Jager PL, Petyuk VA. Discovery of Proteoforms Associated with Alzheimer's Disease Through Quantitative Top-Down Proteomics. Mol Cell Proteomics 2025:100983. [PMID: 40334744 DOI: 10.1016/j.mcpro.2025.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
The complex nature of Alzheimer's disease (AD) and its heterogenous clinical presentation has prompted numerous large-scale -omic analyses aimed at providing a global understanding of the pathophysiological processes involved. AD involves isoforms, proteolytic products, and post-translationally modified proteins such as amyloid beta (Aβ) and microtuble-associated protein tau. Top-down proteomics (TDP) directly measures these species, and thus, offers a comprehensive view of pathologically relevant proteoforms that are difficult to analyze using traditional proteomic techniques. Here, we broadly explored associations between proteoforms and clinicopathological traits of AD by deploying a quantitative TDP approach across frontal cortex of 103 subjects selected from the ROS and MAP cohorts. The approach identified 1,213 proteins and 11,782 proteoforms, of which 154 proteoforms had at least one significant association with a clinicopathological phenotype. One important finding included identifying Aβ C-terminal truncation state as the key property for differential association between amyloid plaques and cerebral amyloid angiopathy (CAA). Furthermore, various N-terminally truncated forms of Aβ had noticeably stronger association with amyloid plaques and global cognitive function. Additionally, we discovered six VGF neuropeptides that were positively associated with cognitive function independent of pathological burden. The database of brain cortex proteoforms provides a valuable context for functional characterization of the proteins involved in Alzheimer's disease and other late-onset brain pathologies.
Collapse
Affiliation(s)
- James M Fulcher
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ashley N Ives
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shane S Kelly
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas L Fillmore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mowei Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lei Yu
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shahram Oveisgharan
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA; Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center; New York, NY, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
2
|
Sadeghi S, Chen W, Wang Q, Wang Q, Fang F, Liu X, Sun L. Pilot Evaluation of the Long-Term Reproducibility of Capillary Zone Electrophoresis-Tandem Mass Spectrometry for Top-Down Proteomics of a Complex Proteome Sample. J Proteome Res 2024; 23:1399-1407. [PMID: 38417052 PMCID: PMC11002928 DOI: 10.1021/acs.jproteome.3c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) has revolutionized biological research by measuring intact proteoforms in cells, tissues, and biofluids. Capillary zone electrophoresis-tandem MS (CZE-MS/MS) is a valuable technique for TDP, offering a high peak capacity and sensitivity for proteoform separation and detection. However, the long-term reproducibility of CZE-MS/MS in TDP remains unstudied, which is a crucial aspect for large-scale studies. This work investigated the long-term qualitative and quantitative reproducibility of CZE-MS/MS for TDP for the first time, focusing on a yeast cell lysate. Over 1000 proteoforms were identified per run across 62 runs using one linear polyacrylamide (LPA)-coated separation capillary, highlighting the robustness of the CZE-MS/MS technique. However, substantial decreases in proteoform intensity and identification were observed after some initial runs due to proteoform adsorption onto the capillary inner wall. To address this issue, we developed an efficient capillary cleanup procedure using diluted ammonium hydroxide, achieving high qualitative and quantitative reproducibility for the yeast sample across at least 23 runs. The data underscore the capability of CZE-MS/MS for large-scale quantitative TDP of complex samples, signaling its readiness for deployment in broad biological applications. The MS RAW files were deposited in ProteomeXchange Consortium with the data set identifier of PXD046651.
Collapse
Affiliation(s)
- Seyed
Amirhossein Sadeghi
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Wenrong Chen
- Department
of BioHealth Informatics, Indiana University-Purdue
University Indianapolis, 535 W Michigan Street, Indianapolis, Indiana 46202, United States
| | - Qianyi Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Qianjie Wang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Fei Fang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Xiaowen Liu
- Deming
Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, Louisiana 70112, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|