1
|
Lin Z, Zhang Y, Pan H, Hao P, Li S, He Y, Yang H, Liu S, Ren Y. Alternative Strategy To Explore Missing Proteins with Low Molecular Weight. J Proteome Res 2019; 18:4180-4188. [PMID: 31592669 DOI: 10.1021/acs.jproteome.9b00353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying more missing proteins (MPs) is an important mission of C-HPP. With the number of identified MPs being attenuated year by year (2,949 to 2,129 MPs from 2016 to 2019), we have realized that the difficulty of exploring the remaining MPs is a challenge in technique. Herein, we propose a comprehensive strategy to effectively enrich, separate, and identify proteins with low molecular weights, aiming at the discovery of MPs. Basically, a protein extract from human placenta was passed through a C18 SPE column, and the bound proteins that were eluted were further separated with an SDS-PAGE gel or a 50 kDa cutoff filter. The separated proteins were subjected to trypsin digestion, and the MS/MS signals were searched against data sets with two different digestion modes (full-trypsin and semitrypsin). The strategy was adopted, resulting in the identification of 4 MPs with 8 unique peptides (≥2 non-nested unique peptides with ≥9 amino acids). Importantly, the identification of 6 out of 8 of the unique peptides derived from the MPs was further supported by parallel reaction monitoring, which confirmed the identification of 3 MPs from human placenta tissues (Q6NT89: TMF-regulated nuclear protein 1; A0A183: late cornified envelope protein 6A; and Q6UWQ7: insulin growth factor-like family member 2, mapped to chromosomes 1, 1, and 19, respectively). The three proteins ranged in length from 80 aa to 227 aa. The study not only establishes a feasible strategy for analyzing proteins with low molecular weights but also fills a small part of a large gap in the list of MPs. The data obtained in this study are available via ProteomeXchange (PXD014083) and PeptideAtlas (PASS01389).
Collapse
Affiliation(s)
- Zhilong Lin
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yuanliang Zhang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huozhen Pan
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Piliang Hao
- School of Life Science and Technology , ShanghaiTech University , 393 Middle Huaxia Road , Shanghai 201210 , China
| | - Siqi Li
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yanbin He
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Huanming Yang
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,James D. Watson Institute of Genome Sciences , Hangzhou 310058 , China
| | - Siqi Liu
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| | - Yan Ren
- BGI-Shenzhen , Beishan Industrial Zone 11th building , Yantian District, Shenzhen , Guangdong 518083 , China.,Clinical laboratory of BGI Health , BGI-Shenzhen , Shenzhen 518083 , China
| |
Collapse
|
2
|
Sun J, Shi J, Wang Y, Wu S, Zhao L, Li Y, Wang H, Chang L, Lyu Z, Wu J, Liu F, Li W, He F, Zhang Y, Xu P. Open-pFind Enhances the Identification of Missing Proteins from Human Testis Tissue. J Proteome Res 2019; 18:4189-4196. [DOI: 10.1021/acs.jproteome.9b00376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jinshuai Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shujia Wu
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Liping Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Guizhou University School of Medicine, Guiyang 550025, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Hong Wang
- School of Public Health, North China University Science and Technology, Tangshan 063210, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Zhitang Lyu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Junzhu Wu
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Fengsong Liu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Wenjun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
- Guizhou University School of Medicine, Guiyang 550025, China
| |
Collapse
|
3
|
Sun J, Shi J, Wang Y, Chen Y, Li Y, Kong D, Chang L, Liu F, Lv Z, Zhou Y, He F, Zhang Y, Xu P. Multiproteases Combined with High-pH Reverse-Phase Separation Strategy Verified Fourteen Missing Proteins in Human Testis Tissue. J Proteome Res 2018; 17:4171-4177. [PMID: 30280576 DOI: 10.1021/acs.jproteome.8b00397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Subsequent to conducting the Chromosome-Centric Human Proteome Project, we have focused on human testis-enriched missing proteins (MPs) since 2015. For protein coverage to be enhanced, a multiprotease strategy was used for separation of samples by 10% SDS-PAGE. For the separating efficiency to be improved, a high-pH reverse phase (RP) separation strategy was applied to fractionate complex samples in this study. A total of 11,558 proteins was identified, which is the largest proteome data set for single human tissue sample so far. On the basis of this large-scale data set, we verified 14 MPs (PE2) in neXtProt (2018-01) after spectrum quality analysis, isobaric post-translational modification, and single amino acid variant filtering, and synthesized peptide matching. Tissue expression analysis showed that 3 of 14 MPs were testis-specific proteins. Functional analysis showed that 10 of 14 MPs were closely related to liver tumor, liver carcinoma, and hepatocellular carcinoma. Another 100 MPs were listed as candidates but required additional verification information. All MS data sets have been deposited into the ProteomeXchange with the identifier PXD009737.
Collapse
Affiliation(s)
- Jinshuai Sun
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences , Hebei University , Baoding , Hebei 071002 , China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Jiahui Shi
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences , Hebei University , Baoding , Hebei 071002 , China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Yang Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Degang Kong
- Department of Hepatopancreatobiliary Surgery , The Second Affiliated Hospital of Tianjin Medical University , Tianjin 300211 , China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Fengsong Liu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences , Hebei University , Baoding , Hebei 071002 , China
| | - Zhitang Lv
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences , Hebei University , Baoding , Hebei 071002 , China
| | - Yue Zhou
- Demo Laboratory of Thermofisher Scientific China , Shanghai 200120 , China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China
| | - Yao Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Ping Xu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences , Hebei University , Baoding , Hebei 071002 , China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing) , Beijing Institute of Lifeomics , Beijing 102206 , China.,Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science , Wuhan University , Wuhan 430072 , China
| |
Collapse
|
4
|
He C, Sun J, Shi J, Wang Y, Zhao J, Wu S, Chang L, Gao H, Liu F, Lv Z, He F, Zhang Y, Xu P. Digging for Missing Proteins Using Low-Molecular-Weight Protein Enrichment and a “Mirror Protease” Strategy. J Proteome Res 2018; 17:4178-4185. [DOI: 10.1021/acs.jproteome.8b00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cuitong He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Jinshuai Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Jialing Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Shujia Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Fengsong Liu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Zhitang Lv
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
5
|
He C, Jia C, Zhang Y, Xu P. Enrichment-Based Proteogenomics Identifies Microproteins, Missing Proteins, and Novel smORFs in Saccharomyces cerevisiae. J Proteome Res 2018; 17:2335-2344. [DOI: 10.1021/acs.jproteome.8b00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Cuitong He
- Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ping Xu
- Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| |
Collapse
|
6
|
Wang Y, Chen Y, Zhang Y, Wei W, Li Y, Zhang T, He F, Gao Y, Xu P. Multi-Protease Strategy Identifies Three PE2 Missing Proteins in Human Testis Tissue. J Proteome Res 2017; 16:4352-4363. [PMID: 28959888 DOI: 10.1021/acs.jproteome.7b00340] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although 5 years of the missing proteins (MPs) study have been completed, searching for MPs remains one of the core missions of the Chromosome-Centric Human Proteome Project (C-HPP). Following the next-50-MPs challenge of the C-HPP, we have focused on the testis-enriched MPs by various strategies since 2015. On the basis of the theoretical analysis of MPs (2017-01, neXtProt) using multiprotease digestion, we found that nonconventional proteases (e.g. LysargiNase, GluC) could improve the peptide diversity and sequence coverage compared with Trypsin. Therefore, a multiprotease strategy was used for searching more MPs in the same human testis tissues separated by 10% SDS-PAGE, followed by high resolution LC-MS/MS system (Q Exactive HF). A total of 7838 proteins were identified. Among them, three PE2 MPs in neXtProt 2017-01 have been identified: beta-defensin 123 ( Q8N688 , chr 20q), cancer/testis antigen family 45 member A10 ( P0DMU9 , chr Xq), and Histone H2A-Bbd type 2/3 ( P0C5Z0 , chr Xq). However, because only one unique peptide of ≥9 AA was identified in beta-defensin 123 and Histone H2A-Bbd type 2/3, respectively, further analysis indicates that each falls under the exceptions clause of the HPP Guidelines v2.1. After a spectrum quality check, isobaric PTM and single amino acid variant (SAAV) filtering, and verification with a synthesized peptide, and based on overlapping peptides from different proteases, these three MPs should be considered as exemplary examples of MPs found by exceptional criteria. Other MPs were considered as candidates but need further validation. All MS data sets have been deposited to the ProteomeXchange with identifier PXD006465.
Collapse
Affiliation(s)
- Yihao Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine , Beijing 100850, China
| | - Yang Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University , Guangzhou 510275, China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine , Beijing 100850, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430072, China.,Graduate School, Anhui Medical University , Hefei 230032, China.,Tianjin Baodi Hospital , Tianjin 301800, China
| |
Collapse
|
7
|
Peng X, Xu F, Liu S, Li S, Huang Q, Chang L, Wang L, Ma X, He F, Xu P. Identification of Missing Proteins in the Phosphoproteome of Kidney Cancer. J Proteome Res 2017; 16:4364-4373. [PMID: 28857561 DOI: 10.1021/acs.jproteome.7b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Identifying missing proteins (MPs) has been one of the critical missions of the Chromosome-Centric Human Proteome Project (C-HPP). Since 2012, over 30 research teams from 17 countries have been trying to search adequate and accurate evidence of MPs through various biochemical strategies. MPs mainly fall into the following classes: (1) low-molecular-weight (LMW) proteins, (2) membrane proteins, (3) proteins that contained various post-translational modifications (PTMs), (4) nucleic acid-associated proteins, (5) low abundance, and (6) unexpressed genes. In this study, kidney cancer and adjacent tissues were used for phosphoproteomics research, and 8962 proteins were identified, including 6415 phosphoproteins, and 44 728 phosphosites, of which 10 266 were unreported previously. In total, 75 candidate detections were found, including 45 phoshoproteins. GO analysis for these 75 candidate detections revealed that these proteins mainly clustered as membrane proteins and took part in nephron and kidney development. After rigorous screening and manual check, 9 of them were verified with the synthesized peptides. Finally, only one missing protein was confirmed. All mass spectrometry data from this study have been deposited in the PRIDE with identifier PXD006482.
Collapse
Affiliation(s)
- Xuehui Peng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430072, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Feng Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Suzhen Li
- Graduate School, Anhui Medical University , Hefei 230032, China
| | - Qingbo Huang
- Chinese PLA General Hospital , Urology Department, Beijing 100853, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Lei Wang
- Chinese PLA General Hospital , Urology Department, Beijing 100853, China
| | - Xin Ma
- Chinese PLA General Hospital , Urology Department, Beijing 100853, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Ping Xu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430072, China.,State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Graduate School, Anhui Medical University , Hefei 230032, China
| |
Collapse
|
8
|
Segura V, Garin-Muga A, Guruceaga E, Corrales FJ. Progress and pitfalls in finding the 'missing proteins' from the human proteome map. Expert Rev Proteomics 2017; 14:9-14. [PMID: 27885863 DOI: 10.1080/14789450.2017.1265450] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/23/2016] [Indexed: 01/09/2023]
Abstract
The Human Proteome Project was launched with two main goals: the comprehensive and systematic definition of the human proteome map and the development of ready to use analytical tools to measure relevant proteins in their biological context in health and disease. Despite the great progress in this endeavour, there is still a group of reluctant proteins with no, or scarce, experimental evidence supporting their existence. These are called the 'missing proteins' and represent one of the biggest challenges to complete the human proteome map. Areas covered: This review focuses on the description of the missing proteome based on the HUPO standards, the analysis of the reasons explaining the difficulty of detecting missing proteins and the strategies currently used in the search for missing proteins. The present and future of the quest for the missing proteins is critically revised hereafter. Expert commentary: An overarching multidisciplinary effort is currently being done under the HUPO umbrella to allow completion of the human proteome map. It is expected that the detection of missing proteins will grow in the coming years since the methods and the best tissue/cell type sample for their search are already on the table.
Collapse
Affiliation(s)
- Victor Segura
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Alba Garin-Muga
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Elizabeth Guruceaga
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| | - Fernando J Corrales
- a Proteomics and Bioinformatics Laboratory, CIMA , University of Navarra , Pamplona , Spain
| |
Collapse
|
9
|
Zhang X. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Proteomics 2016; 17. [PMID: 27633951 DOI: 10.1002/pmic.201600209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/31/2016] [Accepted: 09/13/2016] [Indexed: 01/05/2023]
Abstract
Precision medicine, particularly therapeutics, emphasizes the atomic-precise, dynamic, and systems visualization of human membrane proteins and their endogenous modifiers. For years, bottom-up proteomics has grappled with removing and avoiding detergents, yet faltered at the therapeutic-pivotal membrane proteins, which have been tackled by classical approaches and are known for decades refractory to single-phase aqueous or organic denaturants. Hydrophobicity and aggregation commonly challenge tissue and cell lysates, biofluids, and enriched samples. Frequently, expected membrane proteins and peptides are not identified by shotgun bottom-up proteomics, let alone robust quantitation. This review argues the cause of this proteomic crisis is not detergents per se, but the choice of detergents. Recently, inclusion of compatible detergents for membrane protein extraction and digestion has revealed stark improvements in both quantitative and structural proteomics. This review analyzes detergent properties behind recent proteomic advances, and proposes that rational use of detergents may reconcile outstanding membrane proteomics dilemmas, enabling ultradeep coverage and minimal artifacts for robust protein and endogenous PTM measurements. The simplicity of detergent tools confers bottom-up membrane proteomics the sophistication toward precision medicine.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Wei W, Luo W, Wu F, Peng X, Zhang Y, Zhang M, Zhao Y, Su N, Qi Y, Chen L, Zhang Y, Wen B, He F, Xu P. Deep Coverage Proteomics Identifies More Low-Abundance Missing Proteins in Human Testis Tissue with Q-Exactive HF Mass Spectrometer. J Proteome Res 2016; 15:3988-3997. [PMID: 27535590 DOI: 10.1021/acs.jproteome.6b00390] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since 2012, missing proteins (MPs) investigation has been one of the critical missions of Chromosome-Centric Human Proteome Project (C-HPP) through various biochemical strategies. On the basis of our previous testis MPs study, faster scanning and higher resolution mass-spectrometry-based proteomics might be conducive to MPs exploration, especially for low-abundance proteins. In this study, Q-Exactive HF (HF) was used to survey proteins from the same testis tissues separated by two separating methods (tricine- and glycine-SDS-PAGE), as previously described. A total of 8526 proteins were identified, of which more low-abundance proteins were uniquely detected in HF data but not in our previous LTQ Orbitrap Velos (Velos) reanalysis data. Further transcriptomics analysis showed that these uniquely identified proteins by HF also had lower expression at the mRNA level. Of the 81 total identified MPs, 74 and 39 proteins were listed as MPs in HF and Velos data sets, respectively. Among the above MPs, 47 proteins (43 neXtProt PE2 and 4 PE3) were ranked as confirmed MPs after verifying with the stringent spectra match and isobaric and single amino acid variants filtering. Functional investigation of these 47 MPs revealed that 11 MPs were testis-specific proteins and 7 MPs were involved in spermatogenesis process. Therefore, we concluded that higher scanning speed and resolution of HF might be factors for improving the low-abundance MP identification in future C-HPP studies. All mass-spectrometry data from this study have been deposited in the ProteomeXchange with identifier PXD004092.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Weijia Luo
- Graduate School, Anhui Medical University , Hefei 230032, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Life Science College, Southwest Forestry University , Kunming, 650224, China
| | - Xuehui Peng
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430072, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Institute of Microbiology , Chinese Academy of Science, Beijing 100101, China
| | - Manli Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Yan Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Na Su
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - YingZi Qi
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Lingsheng Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Bo Wen
- BGI-Shenzhen , Shenzhen 518083, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences Beijing, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, Beijing Institute of Radiation Medicine , Beijing 102206, China.,Graduate School, Anhui Medical University , Hefei 230032, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of the Ministry of Education, School of Pharmaceutical Sciences, Wuhan University , Wuhan 430072, China
| |
Collapse
|
11
|
Zhao M, Wei W, Cheng L, Zhang Y, Wu F, He F, Xu P. Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process. J Proteome Res 2016; 15:4020-4029. [PMID: 27485413 DOI: 10.1021/acs.jproteome.6b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A membrane protein enrichment method composed of ultracentrifugation and detergent-based extraction was first developed based on MCF7 cell line. Then, in-solution digestion with detergents and eFASP (enhanced filter-aided sample preparation) with detergents were compared with the time-consuming in-gel digestion method. Among the in-solution digestion strategies, the eFASP combined with RapiGest identified 1125 membrane proteins. Similarly, the eFASP combined with sodium deoxycholate identified 1069 membrane proteins; however, the in-gel digestion characterized 1091 membrane proteins. Totally, with the five digestion methods, 1390 membrane proteins were identified with ≥1 unique peptides, among which 1345 membrane proteins contain unique peptides ≥2. This is the biggest membrane protein data set for MCF7 cell line and even breast cancer tissue samples. Interestingly, we identified 13 unique peptides belonging to 8 missing proteins (MPs). Finally, eight unique peptides were validated by synthesized peptides. Two proteins were confirmed as MPs, and another two proteins were candidate detections.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , 27 Tai-Ping Lu Road, Beijing 100850, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, Anhui, P. R. China
| |
Collapse
|
12
|
Guo J, Cui Y, Yan Z, Luo Y, Zhang W, Deng S, Tang S, Zhang G, He QY, Wang T. Phosphoproteome Characterization of Human Colorectal Cancer SW620 Cell-Derived Exosomes and New Phosphosite Discovery for C-HPP. J Proteome Res 2016; 15:4060-4072. [PMID: 27470641 DOI: 10.1021/acs.jproteome.6b00391] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiahui Guo
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yizhi Cui
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ziqi Yan
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yanzhang Luo
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wanling Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Suyuan Deng
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shengquan Tang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional
Protein Research of Guangdong Higher Education Institutes, Institute
of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
13
|
Paik YK, Omenn GS, Overall CM, Deutsch EW, Hancock WS. Recent Advances in the Chromosome-Centric Human Proteome Project: Missing Proteins in the Spot Light. J Proteome Res 2016; 14:3409-14. [PMID: 26337862 DOI: 10.1021/acs.jproteome.5b00785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Gilbert S Omenn
- Center for Computational Medicine and Bioinformatics, University of Michigan , Ann Arbor, Michigan 48109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Christopher M Overall
- Department of Biochemistry and Molecular Biology, University of British Columbia , Vancouver, British Columbia V6T 1Z3, Canada.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - Eric W Deutsch
- Institute for Systems Biology , Seattle, Washington 98109, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| | - William S Hancock
- Department of Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States.,Yonsei Proteome Research Center, Yonsei University , Seoul 120-749, Korea
| |
Collapse
|
14
|
Zhao M, Cai M, Wu F, Zhang Y, Xiong Z, Xu P. Recombinant expression, refolding, purification and characterization of Pseudomonas aeruginosa protease IV in Escherichia coli. Protein Expr Purif 2016; 126:69-76. [PMID: 27260967 DOI: 10.1016/j.pep.2016.05.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022]
Abstract
Several protease IV enzymes are widely used in proteomic research. Specifically, protease IV from Pseudomonas aeruginosa has lysyl endopeptidase activity. Here, we report the recombinant expression, refolding, activation, and purification of this protease in Escherichia coli. Proteolytic instability of the activated intermediate, a major obstacle for efficient production, is controlled through ammonium sulfate precipitation. The purified protease IV exhibits superior lysyl endopeptidase activity compared to a commercial product.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing, 102206, PR China
| | - Man Cai
- Prosit Sole Biotechnology, Co., Ltd., Beijing, 100085, PR China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing, 102206, PR China; Life Science College, Southwest Forestry University, Kunming, 650224, PR China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing, 102206, PR China; Institute of Microbiology Chinese Academy of Science, Beijing, 100101, PR China
| | - Zhi Xiong
- Life Science College, Southwest Forestry University, Kunming, 650224, PR China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine, Beijing, 102206, PR China; Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China; Anhui Medical University, Hefei, 230032, Anhui, PR China.
| |
Collapse
|